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Preface

These proceedings comprise peer-reviewed papers based on the invited lectures, short
communications, and poster presentations from the 22nd seminar Programs and
Algorithms of Numerical Mathematics (PANM), held at Hejnice Monastery, Czech
Republic, from June 23 to 28, 2024.

The seminar was organized by the Institute of Mathematics of the Czech Academy
of Sciences under the auspices of EU-MATHS-IN.CZ, the Czech Network for Math-
ematics in Industry, with financial support from the RSJ Foundation. Continuing
the tradition of its predecessors, PANM 2024 followed a long-standing series of bien-
nial (with one exception) seminars on mathematical software and numerical methods,
held in various locations — including Aľsovice, Bratř́ıkov, Janov nad Nisou, Kořenov,
Lázně Libverda, Dolńı Maxov, Prague, Hejnice, and Jablonec nad Nisou — since its
inception in 1983. The primary objective of these seminars is to provide a platform
for discussing advanced topics in numerical analysis, the implementation of numer-
ical algorithms, novel approaches to mathematical modelling, and computational
methods for both single- and multi-processor applications.
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The seminar welcomed 45 participants, primarily from Czech universities and in-
stitutes of the Czech Academy of Sciences, several also from abroad. We particularly
value the participation of young scientists, PhD candidates, and undergraduate stu-
dents. We hope that those attending PANM for the first time found the atmosphere
of the seminar both welcoming and stimulating and that they will continue to be
part of the PANM community in the future.

The conference photo was taken in front of the Hejnice Monastery that hosted the
seminar. We are grateful for the opportunity to return to these inspiring premises
after the break in 2022.

The organizing committee comprised Jan Chleboun, Jan Papež, Miro Rozložńık,
Karel Segeth, Jakub Š́ıstek, and Tomáš Vejchodský. We also extend our sincere
thanks to Ms. Hana B́ılková for preparing the manuscripts for both the electronic
and print versions of these proceedings.

Finally, the editors and organizers wish to thank to all participants for their
valuable contributions and, in particular, to the scientists who dedicated their time
to reviewing the submitted manuscripts.

Editors
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AERODYNAMIC DECELERATION AT VELOCITIES
NEAR THE ESCAPE VELOCITY

Stanislav Bartoň

Opole University of Technology
Prószkowska Street 76, 45-758 Opole, Poland

s.barton@po.edu.pl

Abstract: This article presents basic procedures for calculating the trajec-
tory of a spaceship that uses only the Earth’s atmosphere to reduce its speed,
allowing it to land on the Earth’s surface successfully. The first flight of the
ARTEMIS program, which took place from November 16 to December 11 2022,
was used as a template for the calculations. All calculations are performed
in the symbolic algebra program Maple. To simplify the calculations, forces
that have a less significant impact on the shape of the trajectory, such as the
gravitational influence of the Sun and Moon, the rotation of the Earth, and
its non-spherical shape, were neglected. To conserve space, only the essen-
tial components of the solution are shown, given the intensive calculations
involved. The commands used to produce the graphics are not included.

Keywords: Newton’s equations of motion, aerodynamic drag, atmospheric
density, gravitational field, iteration method, Maple

MSC: 34A34, 68W30, 76-04

1. Introduction

The Artemis I mission inspired this article, which expands on the mathematical
models the author developed in 2002, see [3].

Spacecraft landings are among the most demanding phases of space missions.
Lunar missions necessitate precise trajectories, mandating frequent course correc-
tions. Altering the spacecraft’s direction and velocity during lunar orbit insertion
and Earth return is also crucial. Fuel consumption is directly linked to the space-
craft’s overall mass, meaning more fuel is required for final maneuvers if more is
needed for mid-course corrections. Given the limited launch mass of rockets, fuel
for course corrections is also limited. To conserve fuel during atmospheric reentry,
spacecraft utilize aerodynamic drag, a process that doesn’t consume fuel.

All input variables for the forthcoming calculations are expressed numerically
using SI base or derived units. To conserve space, only numerical values will be

DOI: 10.21136/panm.2024.01
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Figure 1: ARTEMIS I Mission Map, [1].

presented. For spacecraft returning from lunar trajectories, reentry speeds approach
the escape cosmic velocity, ≈ 11.2e3. Martian return speeds are significantly higher,
around ≈ 21e3. The Orion spacecraft during the ARTEMIS 1 mission reentered at
W = 10.7e3, detailed in [2] and see Fig. 1.

2. Derivation of equations of motion

We start with the fundamental form of Newton’s equations of motion:[
d2 x(t)

dt2
,
d2 y(t)

dt2

]
=

1

M
[Fx (x(t), y(t)) , Fy (x(t), y(t))] , (1)

where x and y represent rectangular coordinates with the origin at the Earth’s center.
The positive x-axis points towards the initial point of the landing trajectory, located
at [x0, 0] , x0 = 1e6, where the spacecraft is at time t = 0 and ~F is the vector repre-
senting the total force acting on the spacecraft, which has a mass of M = 1.00375e5,
see [5].

The primary forces acting on a descending spacecraft are the gravitational force
~G ≡ [Gx, Gy] and and aerodynamic drag ~D ≡ [Dx, Dy]

|~G| = κMeM

r2
, | ~D| = Cx ρ(h)S V 2

2
. (2)

In these equations: Me = 5.97e24 is the mass of the Earth, κ = 6.67e−11, r is
the distance of the spacecraft from the Earth’s center, Cx = 1.5 is the spacecraft’s
drag coefficient, see [6], S = 19.6 is the spacecraft’s frontal area, see [5] and V is the
spacecraft’s velocity.
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The function describing the variation of atmospheric density ρ with altitude h
above the Earth’s surface is

ρ(h)=e

(
(c1 h2−c2 h+c3)He(c4−h)− (c5 h−c6)He(h−c4)

h+c7

)
, where

c1 = 6.392146930e−11
c2 = 1.447577359e−4
c3 = 3.316213319e−1
c4 = 1.044139387e5

c5 = 3.502764072e1

c6 = 1.41258792e6

c7 = 5.494654461e4

He=Heaviside function

. (3)

The function ρ(h), defined by equation (3), is a generalization of atmospheric density
relationships found in [7]. The coefficients c1, . . . , c7 were computed in Maple using
a least squares fit to a nonlinear, piecewise defined regression model for atmospheric
density, based on tabulated values in [4].

The following substitutions can now be used:

Fx = −Gx −Dx, Fy = −Gy −Dy, r =
√
x(t)2 + y(t)2, h = r −RE,

V =

√
d x(t)
dt

2
+ d y(t)

dt

2
, Gx = |G|x(t)

r
, Gy = |G|y(t)

r
, Dx = |D|

V
dx(t)
dt
, Dy = |D|

V
d y(t)
dt

, (4)

where RE = 6.378e6 represents the Earth’s radius. These substitutions, along with
equations (2), (3) and the provided numerical values, can then be used in equa-
tion (1). Because of space limitations, we are unable to show the final form of these
equations.

3. Calculation of the return trajectory in Maple

A description of the derivation of the equations of motion in Maple would be
very lengthy and formally identical to the previous chapter. Therefore, we will
assume that the equations of motion have already been derived in Maple from the
substitutions (4), (3) and (2) into equation (1) and that this vector equation has been
divided in Maple into two equations describing the motion in the x and y axes. These
equations have been named EQx and EQy in Maple. Both equations form a system of
ordinary nonlinear second-order differential equations. Their numerical solution and
the search for the optimal return trajectory of the spacecraft are the subject of this
part.

By the optimal return trajectory, we mean a trajectory that minimizes decelera-
tion caused by aerodynamic drag. To quantify this deceleration, we introduce a new

variable, Ag =
√

Dx2+Dy2

g
, representing the aerodynamic load factor in multiples of

the standard gravitational acceleration, g = 9.81. A commonly used term for this
quantity is g-force. Here, Dx and Dy represent the components of the aerodynamic
drag force in the x and y directions, respectively.

If the g-force is maximal, then the condition for the existence of an extremum
of a continuous function must hold: dAg(t)

dt
= 0 and the corresponding time t for

which this condition is fulfilled can be found using the Newton-Raphson method.
However, the complication lies in the very complex form of the variable Ag. It
contains multiple occurrences of both d x(t)

dt
and d y(t)

dt
always within the arguments

of nonlinear functions. Given that the use of the Newton-Raphson method requires

9



the computation of Agt = dAg(t)
dt

and Agtt = d2 Ag(t)
dt2

an analytical expression of these
variables would be possible but practically unusable. The analytical expression of
Agtt alone contains 66200 characters and occupies over 300 MB in Maple’s memory.

However, we can still proceed with a numerical solution. To do this, we must first
define the following initial conditions: W:=1.07e4: Alpha:=78.0: RE:=6.378e6:

x0:=RE+1e6: y0:=0. These values represent the spacecraft’s initial position at time
t = 0 which is [x0, y0], and its initial velocity W, which makes an angle of Alpha

degrees with the direction towards the center of the Earth.
Once the initial conditions Ini are defined, we can numerically solve the system

of equations EQx and EQy to obtain a solution Ns. This solution provides the values of
the coordinates and their corresponding velocities at any given time, as demonstrated
in the last line of the following code.

> alpha:=evalf(convert(Alpha*degrees,radians));

> Ini:=x(0)=x0,y(0)=0,D(x)(0)=-W*cos(alpha),D(y)(0)=W*sin(alpha):

> Ns:=dsolve({Ini,EQx,EQy},{x(t),y(t)},numeric):
> Ns(500.);[
t=500.0, x(t)=5249645.296,

d x(t)

dt
=−121.112, y(t)=3646265.675,

d y(t)

dt
=−73.279

]
A slightly modified Ns(tf) procedure allows for the numerical computation of the

third time derivatives of coordinates x and y at time tf. The resulting values are
then substituted into variables Agtt and Agt with the aim of applying the Newton-
Raphsson method to determine the maximum g-force and the corresponding time.

After deriving the equations of motion EQx and EQy, the general analytical ex-
pressions for the third time derivatives of the coordinates, Xttt:=diff(rhs(EQx),t):
and Yttt:=diff(rhs(EQx),t):, must be obtained. Before initiating the iteration, the
first element SUNs:= Ns(tau)[2..-1]: needs to be extracted from the output of Ns.

Now, the iterative procedure AGmax can be used to determine the exact time at
which the maximum overload occurs. The input parameter for this procedure is an
estimate of the time when we expect the maximum g-force to happen.

AGmax := proc(tau) global tau, SUNs;

local dt, Xtts, Ytts, Xttts, Yttts, Agtts, Agts;

dt:=1: SUNs:= Ns(tau)[2..-1]:

while abs(dt)>1e-6 do:

Xtts:=diff(x(t),t,t)=evalf(subs(SUNs,rhs(EQx)));

Ytts:=diff(y(t),t,t)=evalf(subs(SUNs,rhs(EQy)));

Xttts:=diff(x(t),t,t,t)=evalf(subs(Xtts,Ytts,SUNs,Xttt));

Yttts:=diff(y(t),t,t,t)=evalf(subs(Xtts,Ytts,SUNs,Yttt));

Agtts:=evalf(subs(Xttts,Yttts,Xtts,Ytts,SUNs,Agtt));

Agts:=evalf(subs(Xtts,Ytts,SUNs,Agt));dt:=-Agts/Agtts;tau:=tau+dt;

end do:

end proc:
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Similarly, the landing time, i.e., the time at which the altitude h = 0, can be
determined. The calculation is performed by the procedure Tau, again using the
Newton-Raphson method. The input parameter of the procedure is the estimated
landing time.

Tau := proc(T) local dt, tau;

dt := 1.0; tau := T;

while .1e-3 < abs(dt) do

dt := subs(Ns(tau),-h/diff(h,t)); tau := tau+dt end do;

tau

end proc;

Given the specified initial conditions, the trajectory can now be computed. The
landing time, denoted by t0 - #1, is initially determined using the subroutine Tau.
The trajectory is then visualized using the odeplot command and saved as TR - #2.
Similarly, a plot of the overload versus time is generated and saved as GT - #3. The
coordinates of the data points on this plot, represented as [t, Ag], are extracted and
stored in the matrix MG - #4. From this matrix, approximate values of the maximum
g-forces and their corresponding times are determined and stored in MMG - #5. Con-
sidering the selected entry angle, multiple maxima, denoted by nu - #6, may exist.

A loop spanning lines #7 - #11 processes the approximate value of each maxi-
mum. The subroutine AGmax - #8 is employed to calculate the precise times corre-
sponding to these maxima, and the exact g-force values are stored in Agf - #9. The
ordered pairs [time of maximum, maximum g-force] are then collected into the list
AGF - #10.

> t0:=Tau(t0); #1

> TR:=display(odeplot(Ns,[x(t)/RE,y(t)/RE],0..t0,numpoints=1000)): #2

> GT:=odeplot(Ns,[t,Ag],0..t0,numpoints=1000): #3

> MG:=convert(op(1,op(1,GT)),Matrix); #4

> MMG:=[seq(‘if‘(MG[i-1,2]<MG[i,2] and MG[i,2]>MG[i+1,2],

[MG[i,1],MG[i,2]],NULL),i=2..999)]; #5

> nu:=nops(MMG); AGF:=[]; #6

> for k from 1 by 1 to nu do #7

> tau:=MMG[k][1]; AGmax(tau); #8

> Agf:=evalf(subs(SUNs,Ag)); #9

> AGF:=[AGF[],[tau,Agf]]; #10

> end do: #11

4. Calculation of the optimal trajectory

The optimal trajectory is designed to minimize the overload during aerodynamic
braking while also considering the descent time. For this reason, it is advantageous
to select an entry angle into the atmosphere that results in two overload peaks of
equal magnitude. It is possible to find return trajectories with three or more g-force
peaks, but following these trajectories results in circumnavigating the entire Earth

11
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Figure 3: Detail.

on a high-apogee orbits, see Figures 2 and 3. This significantly increases the landing
time. Therefore, these trajectories were rejected.

By following the procedure outlined in Section 3 and appropriately selecting the
interval of the angle Alpha and the step size dAlpha, such an angle can be found very
quickly, see Figure 4.

The optimal value is α = 68◦ 37′ 8.08′′ ± 0.04′′. Landing occurs at t0 = 847.93±
0.01 [s] from the moment the spacecraft was at the initial point. The maximum
g-gorce is Ag = 6.430± 0.001 [g] and the g-force peaks occur at times t1 = 443.33±
0.01 [s] and t2 = 550.94± 0.01 [s], see Figure 5. Figure 6 illustrates the dependence
of a spacecraft’s flight altitude on time, while Figure 7 depicts the time evolution of
the spacecraft’s velocity.

Figure 8 presents the dynamics of the final landing maneuver for the optimal angle
as a 3D curve [Ag(t), V (t), h(t)], along with its projections onto the [Ag(t), V (t)],
[Ag(t), h(t)], and [V (t), h(t)] planes.

5. Conclusion

The presented calculations underscore the critical role of precise navigation in
spacecraft reentry. The range of angles α that guarantee a safe landing is exception-
ally narrow. If the spacecraft deviates from the optimal value of α = 68◦ 37′ 8.08′′ ±
0.04′′ by −3′ 50′′, the landing g-force will exceed 10g. A deviation of −17′ 46′′ will
result in a g-force exceeding 20g, which could have fatal consequences. Additionally,
at low entry angles, the heat shield may not provide sufficient protection, as the rate
of conversion of kinetic energy to thermal energy can be very high.

If the value of angle α increases by 10′ 21′′, the landing will occur after one day,
or 86 400 seconds, after passing the initial point. If the deviation is 11′ 50′′, the
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landing will occur after two days. This means that a difference of one arcminute and
twenty-nine arcseconds results in a full day extension of the flight time. This could
be a significant complication for the spacecraft crew after separation from the service
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module. Furthermore, increasing the deviation from the optimal angle leads to an
exponential increase in landing time. If the spacecraft were to pass the initial point at
a speed higher than the escape velocity, it would enter a solar orbit and never return
to Earth. This is the case for spacecraft returning from interplanetary missions.

This means that the range of atmospheric entry angles is very narrow, approxi-
mately one quarter of a degree. Therefore, the accuracy and quality of mathematical
modeling play a crucial role in solving this problem.

A Maple worksheet with all commands, including the generation of graphics, will
be posted on the Maple application center in the near future.
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Abstract: The aim of this article is to briefly introduce the procedure for
optimizing water turbine blades, which can lead to an innovative blade design
and, consequently, an improvement in the desired properties of the water tur-
bine, such as efficiency or the preferred pressure distribution on the blade. The
computational method is based on formulating an objective function under cer-
tain constraint conditions, which are governed by the Navier-Stokes equations.
This formulation enables the use of the Lagrange multiplier method, which in-
corporates the constraints into the augmented objective function. We derive
the so-called adjoint problem, allowing us to simplify the gradient formulation
for the chosen gradient-based optimization method.

Keywords: shape optimization, continuous adjoint

MSC: 49Q10, 49M41

1. Introduction

The problem of shape optimization, i.e., optimization where we try to find the
optimal shape of a domain or part of it (e.g., water turbine blades), is a constrained
optimization problem. It is necessary to prescribe an objective function (usually
in integral form), constraint conditions (in our case, the equations describing the
fluid flow), and a set of design parameters describing the optimized shape. Further-
more, for the optimization computational process itself, it is essential to determine
the gradient of the objective function (required for any gradient-based optimization
method), which includes the so-called shape derivative. For gradient computation,
the continuous adjoint method is used, i.e., the adjoint problem is derived at first and
then it is discretized. The derivation of the method and of all principles and ideas
will be illustrated by a simplified two-dimensional model with laminar flow. The
selected solver for solving the state and adjoint problems is described in detail in [3].
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Consider the following optimization problem:

min
u,p,Ω

F (u, p,Ω) (1)

subject to incompressible steady-state Navier–Stokes equations (so-called primal or
state equations)

Ru
i = −∂τij

∂xj
+ uj

∂ui
∂xj

+
∂p

∂xi
= 0, i = 1, 2 x ∈ Ω ⊂ R2, (2)

Rp =
∂uj
∂xj

= 0, x ∈ Ω ⊂ R2, (3)

where ui is a component of the velocity vector, p := p
ρ

is static pressure divided by the
constant density of the liquid, and constant kinematic viscosity ν is considered in the

stress tensor τij = ν
(
∂ui
∂xj

+
∂uj
∂xi

)
. The Lipschitz domain boundary ∂Ω := Γ consists

of several disjoint parts: inflow Γin, outflow Γout, periodic parts Γ1, Γ2 and optimized
(changing) part of the boundary Γopt with the following boundary conditions:

u = uin, x ∈ Γin, (4)

u = 0, x ∈ Γopt, (5)

u|Γ1 = u|Γ2 , x ∈ Γ1,Γ2 (6)

p|Γ1 = p|Γ2 , x ∈ Γ1,Γ2

∂u

∂n
|Γ1 =

∂u

∂n
|Γ2 , x ∈ Γ1,Γ2(

∂ui
∂xj

+
∂uj
∂xi

)
nj = 0, i = 1, 2 x ∈ Γout, (7)

p = pout, x ∈ Γout,

where nj is the jth component of the outward unit normal vector to the corresponding
part of the boundary. uin and pout are given functions and the Einstein convention,
where repeated indices imply summation, is used.

The next approach is based on the method of Céa, see [4]. For optimization prob-
lems with equality constraints, it is appropriate to formulate the Lagrange function

L = F +

∫
Ω

λiR
u
i dΩ +

∫
Ω

λpR
p dΩ, (8)

where for each flow (or state) variable ui, i = 1, 2, and p we define the so-called
adjoint variables λi, i = 1, 2, and λp. Function F will be described in Section 2.

Next, it is necessary to choose design variables q ∈ Rnq . Complex shapes, such
as a turbine blade, are suitably described by B-splines. This description is a linear
combination of B-spline basis functions with coefficients known as control points,
see [3]. Given the selected solver, we choose the set of the control points (more
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precisely, coordinates of the control points) as our design parameters. Without loss of
generality, we assume in the following text that the vector q has only one component,
i.e., q = q. To determine the shape gradient using the parametric approach, it is
necessary to compute the total (or material) derivative of the Lagrange function (8)
with respect to the chosen design variables

dL

dq
=

dF

dq
+

d

dq

∫
Ω

λiR
u
i dΩ +

d

dq

∫
Ω

λpR
p dΩ. (9)

Let us briefly summarize the relations between total (material) and partial deriva-
tives both in the domain Ω and on the boundary Γ, for details see [1]. For an arbitrary
quantity I = I(u, p) defined in Ω it holds (after using the Leibniz theorem)

d

dq

∫
Ω

I dΩ =

∫
Ω

∂I

∂q
dΩ +

∫
Γ

I
dxi
dq

ni dΓ, (10)

where the partial derivative can be expressed by the chain rule ∂I
∂q

= ∂I
∂ui

∂ui
∂q

+ ∂I
∂p

∂p
∂q

in
the first integral. The last boundary integral can be split into a sum over individual
segments, but the term dxi

dq
is zero everywhere except the optimized moving boundary,

leaving only the integral over Γopt. For an arbitrary quantity J = J(u, p) defined on
the boundary Γ, it holds

d

dq

∫
Γ

J dΓ =

∫
Γ

dJ

dq
dΓ +

∫
Γ

J
d (dΓ)

dq
, (11)

dJ

dq
=
∂J

∂q
+
∂J

∂xi
ni

dxj
dq

nj and
d (dΓ)

dq
= −κdxi

dq
ni dΓ, (12)

where κ denotes the mean curvature of Γ (can be derived using differential geometry,
see [2]). We assume that the changes of design variables that produce changes of Γopt
in the tangent direction do not change the shape of the domain Ω, therefore we con-
sider only the normal component of the surface deformation. After the substitution
of (12) into (11) we get

d

dq

∫
Γ

J dΓ =

∫
Γ

(
∂J

∂ui

∂ui
∂q

+
∂J

∂p

∂p

∂q

)
dΓ+

∫
Γ

∂J

∂xj
nj

dxi
dq

ni dΓ−
∫
Γ

κ J
dxi
dq

ni dΓ (13)

and again the last two boundary integrals are nonzero only on Γopt and again we
used the chain rule in the first integral.

Now we continue with (9) and after using (10) with I = λR and since the adjoint
variables are independent of the flow variables, we arrive at

dL

dq
=

dF

dq
+

∫
Ω

λi
∂Ru

i

∂q
dΩ +

∫
Ω

λp
∂Rp

∂q
dΩ +

∫
Γopt

(
λjR

u
j + λpR

p
) dxi

dq
ni dΓ. (14)

The next step is to determine the total derivative of the objective function.
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2. Objective function

The overall objective function, which is mentioned in (1), can be considered as
an appropriate weighted combination of multiple components. In this text, we will
introduce four components of the objective function F1, F2, F3, F4, so that:

F = w1F1 + w2F2 + w3F3 + w4F4. (15)

1. The function F1 quantifies the effect of the head. By optimizing this function,
we achieve a minimal difference between the target head Htar and the actual
head H. The function F1 is prescribed on the inflow and outflow part of the
boundary, Γin and Γout. It is defined as follows:

F1 =
1

2

(
H −Htar

Htar

)2

, (16)

where the head H is defined as follows:

H =
1

ρgSin

∫
Γin

ptot,in dΓ− 1

ρgSout

∫
Γout

ptot,out dΓ, (17)

for ptot = pstat +
1

2
ρv2, pstat = ρ p, v =

Q

S
= const., Q =

∫
Γin

uin · n dΓ, (18)

where pstat is static pressure and p kinematic pressure, further ρ denotes the
density of the liquid, g gravitational acceleration, Q is the flow rate and S is
the length of the respective boundary segment.

After some easy manipulations we can see that the only flow variable on which
this term depends is the pressure p. Thus, after a straightforward differentia-
tion of the composite function and using (13), we get

dF1

dq
=

(
H

Htar

− 1

)
1

Htar

∫
Γin

∂f1,in(p)

∂p

∂p

∂q
dΓ−

∫
Γout

∂f1,out(p)

∂p

∂p

∂q
dΓ

 , (19)

where

f1,in(out)(p) =
1

ρgSin(out)

(
p+

1

2
ρv2

)
,

∂f1,in(out)(p)

∂p
=

1

ρgSin(out)

. (20)

2. The function F2 is related to the efficiency of the water turbine. The ideal state
is 100% efficiency, and therefore, we will minimize the deviation from this ideal
state. Thus, we define the function F2 as follows:

F2 = 1− Mω

QρgH
, (21)
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where ω = const. denotes the angular velocity, and its value is prescribed by
the real situation. The torque M , which acts on the turbine blade, i.e. Γopt, is
defined as follows:

M = N

∫
Γopt

M · e dΓ, where M = r× F, F = n pstat (22)

and e is the direction of the axis of rotation, N is the number of blades, F de-
notes the force acting on the blade, r is the position vector perpendicular to the
axis of rotation, and n is the normal vector pointing outward from the suction
side. The above formulas are valid for 3D calculations. For our simplified 2D
model, we choose e = (1, 0, 0), r = (0, 0, 1), ω = 1 and N = 5.

If we substitute the formulas (22) and (17) into (21), then again the resulting
expression depends only on the pressure p, but this time there are integrals over
Γin, Γout and Γopt. Thus, after differentiation of the quotient and using (13) we
obtain

dF2

dq
=− Nω

QρgH

 ∫
Γopt

∂f2,opt(p)

∂p

∂p

∂q
dΓ +

∫
Γopt

(
∂f2,opt

∂xj
nj − κoptf2,opt

)
dxi
dq

ni dΓ


+

Nω

QρgH2

∫
Γopt

f2,opt(p) dΓ

∫
Γin

∂f1,in(p)

∂p

∂p

∂q
dΓ−

∫
Γout

∂f1,out(p)

∂q

∂p

∂q
dΓ

 ,
(23)

where

f2,opt(p) = (r× n) · e p = n2p,
∂f2,opt(p)

∂p
= (r× n) · e = n2. (24)

3. The function F3 represents the pressure distribution on the blade. The opti-
mization aims to match this distribution as closely as possible to the target
pressure, ptar. Hence, F3 is defined as

F3 =
1

2

∫
Γopt

(p− ptar)
2

p2
tar

dΓ. (25)

In this function, the dependence on pressure is clear, so the total derivative
with respect to q is determined using the same procedure as before and we get

dF3

dq
=

∫
Γopt

∂f3,opt(p)

∂p

∂p

∂q
dΓ+

∫
Γopt

(
∂f3,opt(p)

∂xj
nj − κoptf3,opt(p)

)
dxi
dq

ni dΓ, (26)

where

f3,opt(p) =
1

2

(p− ptar)
2

p2
tar

,
∂f3,opt(p)

∂p
=

(p− ptar)

p2
tar

. (27)
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4. The final part of the objective function, F4, minimizes the difference between
the outflow boundary velocity and a given target outflow velocity utar. This
prevents undesirable turbulence behind the runner, thereby improving overall
efficiency. Thus, F4 is defined as:

F4 =
1

2

∫
Γout

‖u− utar‖2

‖utar‖
dΓ. (28)

This function is the only one dependent on the flow variables ui. Using the
same procedure as before we get

dF4

dq
=

∫
Γout

∂f4,out(u)

∂ui

∂ui
∂q

dΓ, (29)

where

f4,out(u) =
1

2

‖u− utar‖2

‖utar‖
,

∂f4,out(u)

∂ui
=
ui − ui,tar

‖utar‖
. (30)

3. Adjoint problem derivation

For the derivation of the adjoint problem, the expressions (19), (23), (26), (29), (2)
and (3) are substituted into (14), the interchangeability of derivatives is used, i.e.
∂
∂q

∂J
∂xi

= ∂
∂xi

∂J
∂q

for any function J , and the Green-Gauss theorem is applied. After
appropriate term rearranging and relabeling to simplify the formulas, and noting that

τaij = ν
(
∂λi
∂xj

+
∂λj
∂xi

)
is representing the adjoint stress tensor and again the Einstein

convention is used, we arrive at

dL

dq
=

(
H

Htar

− 1

)
w1

Htar︸ ︷︷ ︸
C1

 ∫
Γin

∂f1,in(p)

∂p

∂p

∂q
dΓ−

∫
Γout

∂f1,out(p)

∂p

∂p

∂q
dΓ



− w2Nω

QρgH︸ ︷︷ ︸
C2

 ∫
Γopt

∂f2,opt(p)

∂p

∂p

∂q
dΓ +

∫
Γopt

(
∂f2,opt

∂xj
nj − κoptf2,opt

)
dxi
dq

ni dΓ


+

w2Nω

QρgH2

∫
Γopt

f2,opt(p) dΓ

︸ ︷︷ ︸
C3

 ∫
Γin

∂f1,in(p)

∂p

∂p

∂q
dΓ−

∫
Γout

∂f1,out(p)

∂q

∂p

∂q

′
, dΓ



+ w3

∫
Γopt

∂f3,opt(p)

∂p

∂p

∂q
dΓ + w3

∫
Γopt

(
∂f3,opt(p)

∂xj
nj − κoptf3,opt(p)

)
dxi
dq

ni dΓ

+ w4

∫
Γout

∂f4,out(u)

∂ui

∂ui
∂q

dΓ +

∫
Ω

∂τaij
∂xj

∂ui
∂q

dΩ +

∫
Ω

λj
∂uj
∂xi

∂ui
∂q

dΩ
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−
∫
Ω

uj
∂λi
∂xj

∂ui
∂q

dΩ−
∫
Ω

∂λp
∂xi

∂ui
∂q

dΩ−
∫
Ω

∂λj
∂xj

∂p

∂q
dΩ +

∫
Γ

τaijnj
∂ui
∂q

dΓ

+

∫
Γ

ujnjλi
∂ui
∂q

dΓ +

∫
Γ

λpni
∂ui
∂q

dΓ−
∫
Γ

∂τij
∂q

njλi dΓ +

∫
Γ

λini
∂p

∂q
dΓ

+

∫
Γopt

(
λjR

u
j + λpR

p
) dxi

dq
ni dΓ. (31)

First of all, we will focus on the volume integrals in (31). It is useful to avoid
calculations the derivatives of the flow variables with respect to the design parame-
ters, i.e., ∂ui

∂q
and ∂p

∂q
. This can be achieved by setting all the terms that involve these

derivatives to zero. This leads to the adjoint set of equations

Rλ
i = −

∂τaij
∂xj

+ λj
∂uj
∂xi
− uj

∂λi
∂xj
− ∂λp
∂xi

= 0, i = 1, 2, x ∈ Ω ⊂ R2, (32)

Rλp =
∂λj
∂xj

= 0, x ∈ Ω ⊂ R2. (33)

Thus, only the boundary integrals remain and it is necessary to set the correct
boundary conditions in order to reduce the number of integrals as much as possible.

3.1. Boundary conditions for the adjoint problem

Recall that Γ = Γin ∪ Γ1 ∪ Γ2 ∪ Γopt ∪ Γout, i.e. the boundary integral over the
entire boundary is a sum of integrals over the individual parts of the boundary:

1. Γin: For the inlet boundary we set (4) and, therefore, it is easy to see that
∂ui
∂q

= 0 and
∂τij
∂q

= 0 holds. Thus, only the following nonzero integrals over

inlet boundary remain in (31) (again after appropriate term rearranging and
factoring out) ∫

Γin

[
(C1 + C3)

∂f1,in(p)

∂p
+ λini

]
∂p

∂q
dΓ. (34)

So we set

λini = −(C1 + C3)
∂f1,in(p)

∂p
, λiti = 0, x ∈ Γin, (35)

to set the integral (34) to zero.

2. Γout: We set the conditions (7) for the flow variables, thus for differentiation
w.r.t. design parameters at the outflow boundary it holds
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(
∂
∂xj

∂ui
∂q

+ ∂
∂xi

∂uj
∂q

)
nj = 0, i = 1, 2 and ∂p

∂q
= 0. Thus, it is necessary to han-

dle only the following nonzero integrals in (31) (again after appropriate term
rearranging and factoring out)∫

Γout

(
w4
∂f4,out(u)

∂ui
+ τaijnj + ujnjλi + λpni

)
∂ui
∂q

dΓ. (36)

So if we set

τaijnj + ujnjλi + λpni = −w4
∂f4,out(u)

∂ui
, i = 1, 2, x ∈ Γout, (37)

all the integrals over the output boundary vanish from (31).

3. Γ1, Γ2: For the periodic boundaries, none of the boundary integrals is equal to
zero, so we obtain∫

Γ1

(
τaijnj

∂ui
∂q

+ ujnjλi
∂ui
∂q

+ λpni
∂ui
∂q
− ∂τij

∂q
njλi + λini

∂p

∂q

)
dΓ +

∫
Γ2

(
τaijnj

∂ui
∂q

+ ujnjλi
∂ui
∂q

+ λpni
∂ui
∂q
− ∂τij

∂q
njλi + λini

∂p

∂q

)
dΓ. (38)

For periodic boundary it holds that Γ2 = T (Γ1) is a translational copy of Γ1

under a map T with the opposite normal vector with respect to Γ1 at the cor-
responding points of both boundaries. Each pair of integrals for Γ1 and the
same one for Γ2 vanishes if we set

τaij(x) = τaij(T (x)), x ∈ Γ1, (39)

λi(x) = λi(T (x)), i = 1, 2, x ∈ Γ1,

λp(x) = λp(T (x)), x ∈ Γ1.

4. Γopt: Optimized boundary is the only one which is assumed to be moving.
For velocity, we set homogeneous boundary condition (5), so total derivation
w.r.t. q is equal to zero. Thus, using (12) we obtain the following expression
for the partial derivative w.r.t. q

∂ui
∂q

= − ∂ui
∂xk

nk
dxl
dq

nl, i = 1, 2. (40)

Since no terms vanish on this boundary, thus in (31) we can take care only for
the following integral∫

Γopt

(
−C2

∂f2,opt(p)

∂p
+ w3

∂f3,opt(p)

∂p
+ λini

)
∂p

∂q
dΓ. (41)

For vanishing of (41), we set

λini = C2
∂f2,opt(p)

∂p
− w3

∂f3,opt(p)

∂p
, λiti = 0, x ∈ Γopt. (42)
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4. Gradient

After setting the boundary conditions as described above and substituting (40)
into (31), we obtain the expression for the gradient in the form

dL

dq
= C2

∫
Γopt

(
∂f2,opt

∂xj
nj − κoptf2,opt

)
dxi
dq

ni dΓ + w3

∫
Γopt

(
∂f3,opt(p)

∂xj
nj−

− κoptf3,opt(p)

)
dxi
dq

ni dΓ−
∫

Γopt

(
τaijnj + ujnjλi + λpni

) ∂ui
∂xk

nk
dxl
dq

nl dΓ

−
∫

Γopt

∂τij
∂q

njλi dΓ +

∫
Γopt

(
λjR

u
j + λpR

p
) dxi

dq
ni dΓ, (43)

where the term
∂τij
∂q
njλi can be rewritten as follows (after substituting (40) into the

stress tensor and considering that the boundary conditions (42) were set for λi on Γopt

boundary and tedious computation)

∂τij
∂q

njλi = λini

(
τij

d(ninj)

dq
+
∂τij
∂xm

nm
dxk
dq

nkninj

)
. (44)

The numerical computation proceeds as follows: we set the initial shape of the
blade, i.e., the boundary Γopt, and solve the primal problem (2) and (3) with the
boundary conditions (4), (5), (6), (7). This provides the state variables u1, u2 and p.
The adjoint quantities λ1, λ2 and λp are obtained by solving the adjoint problem (32)
and (33) with the boundary conditions (35), (37), (39) and (42). Then, the gradient is
computed by using the equation (43) and (44) and the shape of the blade is adjusted
by using any gradient-based method (here, for simplicity, the steepest descent method
is used).

5. Numerical experiment

We test our optimization approach on the simplified problem of flow in a do-
main which is a part of a 2D blade cascade. This cascade is obtained by unfolding
a cylindrical cross-section of the turbine and it is illustrated in Figure 1 (left). The
computational domain is then a passage between two blade profiles, see Figure 1
(right). The domain consists of three B-spline patches of degree 3. Γopt corresponds
to the upper (suction side) and lower (pressure side) boundaries of the middle patch
which form the blade profile. Left and right patches are bounded by periodic bound-
aries Γ1 and Γ2 and inlet boundary (the left-most) Γin and outlet boundary (the
right-most) Γout. We use uin = [7.76,−0.28] on the inlet and kinematic viscosity
ν = 0.01 in this example.

The objective function is defined by its components and corresponding weights
in (15). In this example, we use the following weights

w1 = 1, w2 = 1.8, w3 = 1, w4 = 0.2,

25



Figure 1: Illustration of the flow in the blade raw (left). Computational domain
(right).

which prefers the efficiency component. The target values of pressure (ptar) on pres-
sure and suction sides of the blade profile and velocity (utar) at the output are equal
to the integral mean values of particular quantities over the corresponding boundary
for the initial geometry. For simplicity we use steepest descent method with constant
step γ = 5 · 10−4. Therefore the control points of B-spline curves describing both
parts of Γopt are updated during the iteration process by the formula

qnew = q− γ∇qL, (45)

where the length of the vector q is 42.The optimization is stopped after 40 iterations.

Figure 2: Evolution of the objective function and its components.

The values of objective function and its components are shown in Figure 2. We can
see that the objective function as well as its individual components are decreasing,
except for F1. That is obvious, because Htar is defined as the head of the problem
with the initial geometry and therefore F1 = 0 for the initial geometry.

The comparison of the initial blade profile and the optimized one is shown in
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Figure 3: Initial and optimized blade.

Figure 4: Pressure distribution over the blade profile.

Figure 3. The initial and optimized pressure distribution over the profile is shown
in Figure 4 together with the values of the pressure targets.

6. Conclusion

In conclusion, this method shows great promise for further development (espe-
cially into 3D and turbulent flow models), as even in the presented simple 2D model
with laminar flow and a basic optimization method, it was able to reduce the objec-
tive function and adjust the blade in a meaningful way.
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Abstract: This article studies several algorithms for QR factorization based
on hierarchical Householder reflectors organized into elimination trees, which
are particularly suited for tall-and-skinny matrices and allow parallelization.
We examine the effect of various parameters on the performance of the tree-
based algorithms. The work is accompanied with a custom implementation
that utilizes a task-based runtime system (OpenMP or StarPU). The same al-
gorithm is implemented in the PLASMA library. The performance evaluation
is done on the recent NVIDIA Grace CPU Superchip.

Keywords: QR factorization, task-based programming, NVIDIA Grace CPU

MSC: 65F05

1. Introduction

The need for computing the QR factorization of dense matrices with substantially
more rows than columns (so-called tall-and-skinny matrices) arises in a number of
applications, for example, when solving overdetermined systems of linear equations
by the least-squares method or as a preprocessing step for the SVD algorithm used
in reduced order modeling.

Modern algorithms for computing the QR factorization of a matrix using orthog-
onal triangularization by Householder reflectors split the matrix into blocks and then
perform operations on those blocks. Importantly, the parallel TSQR and CAQR al-
gorithms of [7] opened the way to parallelizing the panel factorization and hence
for deriving parallel algorithms for tall-and-skinny matrices. These algorithms are
implemented for example in the ScaLAPACK1 [3] and PLASMA2 [5] libraries. Other
recent approaches include numerically stable variants of triangular orthogonalization
using Cholesky QR [11, 12] or randomized QR factorization methods, see, e.g., [13].

DOI: 10.21136/panm.2024.03
1http://www.netlib.org/scalapack
2https://icl.utk.edu/plasma
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The algorithms work with several parameters (e.g., the block size, inner block
size, etc.) that do not influence the result but have an impact on the computation
time [4, 10]. In our paper [6], we present a new version of the algorithm for QR
factorization based on tasks implemented in the OpenMP version of PLASMA [9]
and perform a study of the effect of the main algorithmic parameters on performance
on several multicore CPU architectures by Intel, AMD, and Arm. In light of [7],
the algorithm can be seen as a combination of the parallel and sequential versions
of the Communication-avoiding QR (CAQR) algorithm, with the latter performed on
the leaves of the tree arising from the former.

The main purpose of the present article is to complement the experiments from [6]
with performance measurements on the NVIDIA Grace CPU Superchip, another
recent multicore chip based on the Arm architecture. The reader is referred to [6] for
a more detailed description of the algorithm.

2. QR factorization

QR factorization is a matrix decomposition of a matrix A ∈ Rm,n into a prod-
uct QR, where Q ∈ Rm,m is an orthogonal matrix and Rm,n is an upper trapezoidal
matrix. Many different methods may be used for computing the QR factorization
of a matrix, but for developing parallel algorithms for QR computation, the House-
holder reflector method is of particular interest.

It works by applying a series of orthogonal transformations Q1, Q2, . . . , Qk for k =
min(m,n) on an arbitrary matrix A ∈ Rm,n, where each of the transformations Qi:

• zeros out the vector A(i+1):m,i using the entry Ai,i by a reflection in a subspace
corresponding to the last m− i+ 1 rows of A, and

• functions as the identity transformation in the subspace corresponding to the
first m− 1 rows.

As a result, the matrix R = QkQk−1 . . . Q1A is upper triangular, and the QR
decomposition of A can be formed as A = QR, where Q = QT

1Q
T
2 . . . Q

T
k .

3. Elimination schemes

3.1. Column block Householder reflector algorithm

To promote BLAS Level 3 operations in the application of the Householder re-
flectors, matrix columns can be grouped into column blocks as in the LAPACK
library3 [1]. This column-blocking also opens a way to parallelize the algorithm,
since each block column of the updated matrix can be updated independently. In
particular, the algorithm performs the following steps for each column block:

1. Factorize the column block into upper triangular form using a block House-
holder reflector.

2. Apply the calculated reflector to subsequent column blocks (potentially in par-
allel).

3http://www.netlib.org/lapack
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A

→

Q1A

→

Q2Q1A

→

Q3Q2Q1AQ3Q2Q1A

Figure 1: Example of the column block algorithm for a matrix with 3 column blocks.

The algorithm is visualized in Fig. 1.
In LAPACK, the routine for factorization using block Householder reflectors is

named GEQRT. The routine that applies the calculated factor Q on an arbitrary
matrix of appropriate size is labeled GEMQRT. These two routines will be referred
to as general QR kernels in the rest of this article.

If a multithreaded implementation of the BLAS library is employed, parallelism
is exploited in the second step of the algorithm. This approach, however, only offers
enough parallelism if the matrix has a sufficient number of block columns, as only the
update in Step 2 can be parallelized. Hence, for matrices A ∈ Rm,n with m >> n,
this algorithm exploits parallelism insufficiently and offers subpar performance.

3.2. TS kernels & TS flat tree elimination scheme

In order to develop a parallel algorithm with good performance for tall-and-skinny
matrices, it is necessary to split the matrix into row blocks as well as column blocks.

For a blocked matrix A =
(
AT

1 AT
2

)T
, where the block A1 has a QR factorization

A1 = Q1R1 and the matrix
(
RT

1 AT
2

)T
has a QR decomposition Q̂R, it holds (see [7])

that

A =

(
A1

A2

)
=

(
Q1R1

A2

)
=

(
Q1 0
0 I

)(
R1

A2

)
=

(
Q1 0
0 I

)
Q̂︸ ︷︷ ︸

Q̄

R = Q̄R.

Since Q̄ is a product of two orthogonal matrices, it is orthogonal as well. As a result,

QR factorizations of the matrices A and
(
RT

1 AT
2

)T
have the same factor R.

Consequently, we can calculate the QR factorization of A by factorizing its
block A1 using GEQRT (so that the matrix A1 gets replaced with R1) followed by

factorizing the triangle-on-top-of-square matrix
(
RT

1 AT
2

)T
. The factorization and

subsequent Q application of triangle-on-top-of square matrices is performed using
the so-called TS kernels:

TSQRT performs factorization of a triangle-on-top-of-square matrix
TSMQR applies the transformation from TSQRT on an arbitrary block matrix

made up of two row/column blocks

A scheme of these functions is visualized in Fig. 2.
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from TSQRT

Figure 2: Scheme of the TSQRT kernel (left) and of the TSMQR kernel (right)
for parameter values SIDE=‘R’ and TRANS=‘T’.

Expanding on the observations made above, we can calculate the QR factorization
of A using the TS flat tree elimination scheme:

1. Factorize the diagonal block using general QR kernels
2. Use it to eliminate the blocks below the main diagonal with TS kernels.

Similarly to the column block algorithm, only the Q application kernels can be
parallelized in this procedure. This algorithm is called sequential CAQR in [7].

3.3. TT kernels & TT binary tree elimination scheme

We now further examine the QR factorization of a blocked matrixA =
(
AT

1 AT
2

)T
.

Let A1 = Q1R1 and A2 = Q2R2 be the QR factorizations of A1 and A2, in their re-
spective order. Let then Q̂R denote the QR factorization of the blocked matrix(
RT

1 RT
2

)T
. Then (cf. [7]):

A =

(
A1

A2

)
=

(
Q1R1

Q2R2

)
=

(
Q1 1
0 Q2

)(
R1

R2

)
=

(
Q1 0
0 Q2

)
Q̂R.

Instead of using the GEQRT kernel on the upper block followed by the TSQRT

kernel to factorize the blocked matrix A =
(
AT

1 AT
2

)T
, we could first factorize both

blocks using the GEQRT kernel (so that the upper triangular parts of the blocks get
replaced with R1 and R2) and then factorize the obtained triangle-on-top-of-triangle
matrix. The last step is done using the TTQRT factorization kernel, whose
scheme in visualized in Fig. 3.

Based on the procedure presented above, we can define the TT binary tree
scheme for decomposing a general blocked matrix A:

1. Factorize all blocks on & below the main diagonal using GEQRT.
2. Eliminate blocks below the (block) diagonal using TTQRT in a binary tree fash-

ion.

The application kernels TTMQR can be parallelized, but now the factorization
kernels in both steps can be performed in parallel, too (provided that they occur on
the same level of the binary tree). This approach is called parallel CAQR in [7].
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Figure 3: Scheme of the TTQRT kernel (left) and of the TTMQR kernel (right)
for parameter values SIDE=‘R’ and TRANS=‘T’.

3.4. Superblock-based elimination schemes

By comparing the TS flat tree and the TT binary tree elimination schemes, we
can see that:

• The TS flat tree scheme requires fewer kernel calls with only the application
kernels being parallelizable.

• The TT binary tree scheme requires more kernel calls with both the factoriza-
tion and Q application kernels being parallelizable.

In this respect, the two schemes can be seen as block versions of the Householder
reflector and the Givens rotation methods, respectively.

To balance out the effects of the two schemes, we may divide each block column
into superblocks, where all superblocks in each column contain the same number
of blocks (with the possible exception of the last superblock in a column). In other
words, each superblock is composed of a fixed number of subsequent blocks. This
number of blocks is called the superblock size b. We then factorize each column
block of the matrix in the following manner:

1. Eliminate all blocks in an individual superblock using the TS flat tree scheme.
2. Eliminate first blocks of all superblocks in this column block using the TT

binary tree scheme.

To select the superblock size b, we may utilize the formula [6]

b =
mt(n

2
t/2 + nt/2)

γp
, (1)

where

• mt is the number of block rows,
• nt is the number of block columns,
• p is the number of available threads,
• γ is a scaling factor (the default selection is γ = 4 as in the PLASMA library).

33



→ → →→ → →· · ·→

TS kernel eliminations TT kernel eliminations

Figure 4: Example of the binary tree elimination scheme for 10 row blocks and
3 column blocks.

Formula (1) takes into account both the shape of the matrix and the number
of CPU cores available for parallelization. As such, we obtain elimination schemes
similar to the TT binary tree scheme for tall-and-skinny matrices, while for square-
like matrices, we obtain elimination schemes very similar to the TS flat tree scheme.

This parameterized scheme is called the superblock binary tree scheme, see
Fig. 4 for an example on a matrix with 10×3 blocks. By selecting a different scheme
for eliminating the first blocks of each superblock in step 2, we may create different
superblock-based schemes (other examples include the superblock greedy and su-
perblock Fibonacci schemes [10], which are later user in Fig. 9). This idea can be
seen as composing a hierarchical elimination tree [8] with different elimination trees
on the top level and flat trees on the leaves (bottom level within superblocks).

4. Task-based runtime systems

The data dependencies between individual kernels can be represented by a di-
rected acyclic graph (DAG), see an example in Fig. 5. From the DAG, we can
see that the amount of available parallelism varies throughout the computation. As
a result, dynamic scheduling is a powerful approach to implement a parallel TS
flat tree scheme as well as the other schemes presented.

To ease the implementation, we use a task-based runtime system. These
are systems that let us split the code into sections called tasks, and then execute
the tasks in parallel while making sure that the data dependencies of the tasks are
satisfied.

The runtime systems used in the implementation are OpenMP and StarPU.
OpenMP4 is a widely used standard for shared memory multicore programming,
while StarPU [2] is a library created mainly with the intention of being used in
heterogeneous systems (systems with multiple types of computing units), mainly
targeting GPU accelerators.

4https://www.openmp.org/
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Figure 5: An example of the directed acyclic graph (DAG) of data dependencies.
The TS flat tree scheme was used on a matrix with 4 row blocks and 3 column
blocks.

5. Results

In this section, we evaluate the effect of different parameters on performance of the
algorithm. We also compare the performance with the Arm Performance Libraries
(ArmPL).

In each of the following figures, every point represents the best performance out
of five consecutive runs. All experiments were performed using m × n matrices of
sizes m = 90000 and n ∈ {250, 500, . . . , 2750, 3000, 4000, . . . , 15000}.

The performance was evaluated at the IT4Innovations National Supercomputing
Center on a node with the following specifications:

• CPU: 1× NVIDIA Grace CPU Superchip
• CPU architecture: Arm64
• CPU cores: 144
• Base CPU frequency: 3.1 GHz
• All-code SIMD frequency: 3.0 GHz
• Instruction set extensions: Scalable Vector Extension 2 (SVE2)

The following library versions were used during the evaluation process:

• GCC 11.3.0
• Hwloc 2.7.1
• StarPU 1.3.10
• Arm Performance Libraries 22.1
• PLASMA 22.9.29

5.1. Block size comparison

In this section, we compare the effect of varying block sizes (nb) on the compu-
tational performance. In PLASMA, the matrix is first copied from column-major
format to the tile layout before the QR factorization starts. After the end, the matrix

35



0
1000

2000
3000

4000
5000

6000
7000

8000
9000

10000
11000

12000
13000

14000
15000

Matrix width (n)

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

Gf
lo

p/
s

nb = 128, ib = 32, no layout tr.
nb = 256, ib = 64, no layout tr.
nb = 512, ib = 128, no layout tr.
nb = 1024, ib = 256, no layout tr.

nb = 128, ib = 32, layout tr.
nb = 256, ib = 64, layout tr.
nb = 512, ib = 128, layout tr.
nb = 1024, ib = 256, layout tr.

Figure 6: Performance for different block sizes (nb). SuperblockGreedy scheme, inner
block size (ib) equal to nb/4, and γ = 4.

is copied back to the column-major format. We refer to these pre-/post-processing
steps as layout translation. While the cost of the layout translation becomes out-
weighed by the faster processing of the matrix in the tile layout for wider matrices,
we show in [6] that for very skinny matrices, it can be considerably faster to avoid
the layout translation. Hence, for each tested block size in this section, we consider
two variants – with and without layout translation.

We can see from Fig. 6 that the block size of 256 offers the best performance on
the NVIDIA Grace node. Layout translation can boost the performance for wider
matrices, while it can hinder the performance for skinnier matrices.

5.2. Inner block size comparison

In this section, we take a look at the effects of different inner block (ib) size values.
The square blocks of size nb are divided into smaller block columns to perform the
block-local operations by column-block oriented functions. Hence, the inner block
size ib (the number of columns within these inner blocks) is always less than or equal
to the selected block size; details can be found again in [6].

As can be seen from Fig. 7, the inner block size choice of 64 is best for the
examined compute node.

5.3. Elimination schemes comparison

In this section, we compare the performance of the different elimination schemes
presented earlier. We also include a performance curve for the Arm Performance
Libraries (ArmPL) for comparison. The results are shown in Fig. 8.

In accordance with the observations in Section 3, the TsFlatTree scheme delivers
a better performance for wider matrices, but it gets outperformed by the TtGreedy
scheme for skinnier matrices. The SuperblockGreedy scheme combines the advan-
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Greedy scheme, γ = 4, and layout translation disabled.
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Figure 8: Performance of different elimination schemes. Block size nb = 256, inner
blocks of size ib = 64, layout translation disabled, and γ = 4 (for the Superblock-
Greedy elimination scheme). The numbers in the plot denote the used superblock
sizes.

tages of both schemes to provide a good performance for both skinny and wide
matrices. Interestingly, the performance of the TtGreedy scheme is only marginally
lower on this architecture. All the schemes outperform the ArmPL implementation
for matrices with more than 500 columns, while the latter slightly outperforms the
TsGreedy scheme for skinnier matrices.
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Figure 9: Performance of various superblock size factors (γ values). Block size
nb = 256, inner block size ib = 64, and layout translation disabled.

5.4. Superblock size factor comparison

Next, we visualize the effects of different choices of the values for the γ parameter
presented in Section 3.4. We compare four different values of γ ∈ {1, 2, 4, 8} for three
different superblock-based elimination schemes (SuperblockGreedy, SuperblockBina-
ryTree and SuperblockFibonacci).

In Fig. 9, we can see similar performances exhibited for all elimination trees and
all γ values except for γ = 1. In the case of γ = 1, the SuperblockGreedy scheme
performs better than the other two schemes for matrices with 1750-3000 columns,
despite still not reaching the performance of the other tested γ values.

5.5. Runtime systems comparison

Finally, we examine the differences between the two presented runtime systems.
Figure 10 shows that the performance of both runtime systems is very similar for
wider matrices, while the OpenMP runtime system performs slightly better for skin-
nier matrices for both tested parameter sets.

6. Conclusions

The results of experiments with the NVIDIA Grace CPU Superchip bring us
mostly to similar conclusions as the results from nodes tested in [6]. Nevertheless,
the Grace node results have a few distinct features:

• The performance drop of the TtGreedy scheme for wider matrices is much less
significant.

• There is a difference in performances of the SuperblockGreedy scheme and
the other two superblock-based schemes for γ = 1. More specifically, the
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Figure 10: Performance of the OpenMP and StarPU runtime systems. The Su-
perblockGreedy scheme with inner blocks of size 32 and 128 (for block sizes of 256
and 512, respectively), layout translation disabled, and γ = 4.

SuperblockGreedy scheme performs better for certain matrix sizes. Hence,
γ ≥ 2 can be recommended also for this architecture.

• The difference between the OpenMP and StarPU runtime systems is small for
skinny matrices and even smaller for wider matrices. Nevertheless, OpenMP
still seems as a good choice for implementing this algorithm.

Details of the algorithm and results for different architectures will appear in [6].
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Abstract: The focus is put on the application of fuzzy sets and Dempster-
Shafer theory in assessing the nature and extent of uncertainty in the response
of M models that model the same phenomenon and depend on fuzzy input
data. Dempster-Shafer theory uses a weighted family of fixed sets called the
focal elements to evaluate the relationship between an arbitrarily chosen set
and the focal elements. It is proposed to create at least M weighted focal
elements on the basis of 1) the responses to fuzzy inputs to the models, and
2) the weights associated with the models. Four variants of this approach are
illustrated by academic examples.
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1. Introduction

In this contribution, the following situation is addressed: Let one phenomenon
be modeled by several models whose input parameters are uncertain. How can the
combined responses of the individual models be assessed and their trustworthiness
evaluated? In other words, what sort of uncertainty quantification can be applied to
the synergy of responses that originates from various models?

An uncertainty analysis applied to one model with uncertain inputs is quite com-
mon. Although the above multi-model situation is not frequent, it is not exceptional.
Take, for instance, 1D models of elastic beams. One can choose the Euler-Bernoulli
beam model, the Timoshenko(-Ehrenfest) model, or the less known nonlinear Gao
beam model [6, 8], see also [9]. The 1D models can always be confronted with 3D
models or, under special circumstances, with 2D models.

A large variety of models with uncertain input data offers the modeling of a long-
term behavior of concrete. They include a number of internationally recognized
models, national codes, and models proposed in academia, see [3].
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2. Elements of fuzzy set theory and evidence theory

Let us recall the three key concepts of fuzzy sets and their applications, namely
the membership function µA of a fuzzy interval A, the α-cut Aα of a fuzzy set A,
and Zadeh’s extension principle.

2.1. Fuzzy sets, membership functions, α-cuts

Let the membership function µA be a continuous and concave function that maps
a closed interval A = [a, b] onto the interval [0, 1]. For computational purposes, let
us limit ourselves to trapezoidal membership functions, i.e., piecewise linear func-
tions identifiable with ordered 4-tuples (a, c1, c2, b) ∈ R4, where µA(a) = 0 = µA(b),
µA(c1) = 1 = µA(c2), and R stands for the set of real numbers. A special, i.e.,
triangular case is obtained if c1 = c2.

The subsets of A defined through

Aα = {x ∈ A| µA(x) ≥ α}, (1)

where α ∈ [0, 1], are called the α-cuts of A.

Remark: The abovementioned concept of membership functions is simple and re-
strictive, but it is tailored to our future computational needs. Another advantage
lies in the fact that the existence of extremes is guaranteed, see (5) and (6), and that
we can replace suprema and infima by maxima and minima in the theory of fuzzy
sets. Nevertheless, a more general concept of fuzzy sets is common, see [5, 13], for
example.

Fuzzy intervals can easily be generalized to fuzzy n-dimensional rectangular par-
allelepiped A = A1 × A2 × · · · × An ⊂ Rn where each interval Ai is associated with
a membership function µAi and the fuzzy variables are mutually independent. Then
for each x = (x1, x2, . . . , xn) ∈ A, we can define

µA(x) = min{µA1(x1), µA2(x2), . . . , µAn(xn)}. (2)

We also observe that

∀α ∈ [0, 1] Aα = Aα1 × Aα2 × · · · × Aαn. (3)

Let g be a continuous function defined on a fuzzy set A (either A ⊂ R or a par-
allelepiped A ⊂ Rn) and mapping A to a range Rg,A. Zadeh’s extension principle
defines the way how to transfer the membership degree from x ∈ A to g(x) ∈ Rg,A.
In detail [13],

∀y ∈ Rg,A µRg,A(y) = max
{x∈A| g(x)=y}

µA(x). (4)

The original definition (4) is not computation-friendly. This is why we will use an
equivalent approach based on the fact that if the α-cuts Rα

g,A are known for all
α ∈ [0, 1] and if y ∈ Rg,A, then

µRg,A(y) = max{α ∈ [0, 1]| y ∈ Rα
g,A}. (5)
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It is not difficult to infer, see [10] or elsewhere, that

∀α ∈ [0, 1] Rα
g,A =

[
min
x∈Aα

g(x),max
x∈Aα

g(x)

]
. (6)

In other words, to obtain Rα
g,A, we have to solve worst-case and best-case scenario

problems (6).

2.2. Evidence theory, focal elements, Belief, Plausibility

The origin of the Dempster-Shafer theory of evidence [4, 11, 1, 12] can be traced
back to considerations about lower and upper bounds of probabilities. In our ap-
proach, we interpret the weights forming the basic probability assignment as the
amounts of trustworthiness assigned to fixed significant sets called focal elements,
see the next paragraphs.

To this end, we assume that a set S of chosen intervals I1, I2, . . . , Is is given
together with the weight map w : I 7→ (0, 1] where I ∈ S and

∑s
i=1w(Ii) = 1. In

the evidence theory, the intervals and the map are called the focal elements and the
basic probability assignment, respectively.

Two values can be associated with an arbitrary subset B ⊂ R, namely Belief and
Plausibility

Bel (B) =
∑

{I∈S : I⊆B}

w(I) and Pla (B) =
∑

{I∈S : I∩B 6=∅}

w(I). (7)

We observe that Bel (B) collects the weights of those focal elements that are fully
covered by B. That is, if these focal elements are outputs of some weighted models,
then B fully represents all of these outputs. In contrast, Pla (B) is less strict as it
allows for both full (subset) and partial (nonempty intersection) representation.

3. Uncertainty quantification in multi-modeling

The background idea is not new. It associates α-cuts of a fuzzy set with focal ele-
ments [2]. A rather straightforward modification leads to an application to responses
of several models. The method will be explained and illustrated on a particular ex-
ample.

Let us consider M = 3 models represented by the following respective functions

m1(p) = 7.3 + 0.02p3(p1p2)(p3+p4), m2(p) = 7.3 + 0.02p2(p1 + p3),

m3(p) = 6 + 0.4
p2p3p4

p1

,

where Np = 4 parameters form the vector p = (p1, p2, p3, p4). If p̂ = (1.2, 2.1, 1.5, 1.2),
then the response of all three models is roughly equal to 7.5 as is also indicated in
Figure 1, the details of which will be given later.
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Figure 1: Membership functions of fuzzy responses.

Let the input parameters pi, i = 1, . . . , Np, belong to intervals Ai ≡ A0
i provided

with membership functions µi. The product of the intervals forms the set A =
A1 × · · · × ANp .

Next, let each model be associated with a positive weight wi ∈ R such that∑M
j=1wj = 1.
In the following numerical examples, we use these membership functions

µ1 = p̂1(0.95, 0.99, 1.01, 1.05), µ2 = p̂2(0.9, 0.98, 1.02, 1.1),

µ3 = p̂3(0.92, 0.97, 1.01, 1.08), µ4 = p̂4(0.93, 0.99, 1.01, 1.05);

and the basic probability assignment defined as w1 = 0.25, w2 = 0.4, and w3 = 0.35.
The partial derivatives of mi allow us to conclude that the functions mi are mono-

tone in each pj on the supports Ai of the membership functions. As a consequence,
the extremes of mi are attained at the ends of the interval Aαi , thus solving (6) for var-
ious values of α is easy. Based on (6) with α = α` = `/Nα, ` = 0, 1, . . . , Nα, Nα = 4,
the approximate piecewise linear membership functions of the ranges of the models’
responses are depicted in Figure 1. The value of the quantity of interest (QoI) is
simply the scalar response of the models to the input data p ∈ A.

We are ready to introduce Algorithm 1:

Step 1: Fix α ∈ [0, 1] and infer the α-cut Aα by using (3) and the α-cuts Aαi ,
i = 1, . . . , Np.
Step 2: By setting g = mj and using (6), calculate Rα

mj ,A
, j = 1, . . . ,M .

Step 3: Interpret the intervals Rα
mj ,A

, j = 1, . . . ,M as focal elements with the
respective weights wj.
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Pla (B) by using (7)
where S = {Rα

mj ,A
}Mj=1.

Step 5: Repeat Step 4 several times with the aim to increase Bel and Pla and to
identify a set B that satisfactorily represents the joined responses of the models on
the level α.
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The algorithm needs some comments. First, the goal of Step 2 can be quite
challenging if the models (unlike our case) are not trivial. It may happen, for in-
stance, that pi are parameters of a problem driven by differential equations whose
solution is then post-processed to obtain a value of mi(p), a quantity of interest. As
a consequence, the minimization and maximization in (6) can be a difficult task.

Second, obtaining the weights wi is a delicate matter. Although measurement-
based approaches can be available, see [7] aiming at stochastic uncertainty, expert
opinion can often be a substantial, if not sole, source of information.

Third, the goal of Step 4 and Step 5 is to find an interval B that best characterizes
the ensemble of output intervals Rα

mj ,A
. It commonly happens that there is no such

“best” interval available. By taking a sufficiently large and appropriately positioned
interval B, we can obtain Bel (B) = 1 = Pla (B). The interval, however, might
be so large that its practical value as a representative of key models’ responses is
questionable. Although it shows the total extent of uncertain responses, it does
not indicate the subsets where the responses overlap, that is, the responses of at
least some models are not too distinct from each other. To identify such intervals,
shorter intervals B must also be tested by the focal elements. Again, the results
can prevent an unequivocal conclusion. Take, for instance, Bel (B1) < Bel (B2) and
Pla (B1) > Pla (B2) for some two intervals B1 and B2 of the same length.

If the number of the output intervals Rα
mj ,A

(i.e., output focal elements) is small,
then the analysis of their intersections and unions can lead to the sets maximizing
Belief and Plausibility. Such analysis is more and more challenging if the number
of output focal elements increases. Bel and Pla values calculated for a family of
intervals is then an option that offers both a general view and sufficiently accurate
information on the synergy of joint responses. This approach will be in the focus of
the next paragraphs.

We define intervals Bd
s,k = (a+ ks, a+ ks+ d) of the length d > 0. The position

of Bd
s,k is controlled by the fixed parameters a ∈ R and s ∈ R as well as by the

parameter k = 0, 1, . . . , K. The intervals Bd
s,k play the role of B in Algorithm 1.

Some results are depicted in Figure 2 where the points [a + ks, Y ] represent the
values Y = Bel (Bd

s,k) and Y = Pla (Bd
s,k). The parameters α and a are fixed to 0.5

and 6.8, respectively.
In the left graph, we observe that k = 15 and k = 19, 20, 21 indicate the intervals

that are worth attention. Although Pla ([7.45, 7.825]) = 1, Bel ([7.45, 7.825]) = 0
might suggests that the intervals with nonzero Belief could be a better represen-
tation of the combined responses since their Bel and Pla values are more balanced.
Similar ambiguity shows the right graph. The analyst can choose either the max-
imum of Pla with a rather low Bel value or the maximum of Bel accompanied by
a decreased Pla value. The interval Bd

s,15 = [7.5, 8.05] shows a balanced assessment
in both respects. Naturally, the use of longer intervals (d = 0.55) increases the Bel
value and increases the number of positions where Pla is equal to one.
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Figure 2: Algorithm 1. Bel (Bd
s,k) and Pla (Bd

s,k) for s = 0.05, d = 0.375 (left) and
s = 0.05, d = 0.55 (right).

3.1. Modifications of Algorithm 1

The standard definition (7) shows a shortcoming that becomes more visible es-
pecially in our application where we wish to assess the extent of joint responses of
the models. In (7), there is no difference between a very short intersection I ∩B and
a full set intersection; both cases are evaluated by the full weight w(I).

To take into account the relative extent of intersection, let us redefine Pla in (7)
as Planew

Bel (B) =
∑

{I∈S: I⊆B}

w(I) and Planew(B) =
∑

{I∈S: I∩B 6=∅}

w(I)
meas1(I ∩B)

meas1 I
(8)

where meas1 stands for the one-dimensional Lebesgue measure, which turns into the
length of intervals in our calculations.

Algorithm 2 coincides with Algorithm 1 except for
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Planew(B) by using (8)
where S = {Rα

mj ,A
}Mj=1.

We observe in Figure 3 that if d = 0.55, then the interval Bs
d,15 = [7.5, 8.05] is the

best representation of the joint model response on the uncertainty level α = 0.5. For
d = 0.375, the analyst would see the interval [7.7, 8.075] as the best representative
though its Planew does not reach the maximum. However, any increase in Planew is
paid for by the zero Bel value.

Both algorithms focus on uncertainty quantification in model responses restricted
to a fixed input uncertainty level, that is, α = 0.5 in our examples. By taking into
account all the α-cuts of the fuzzy inputs and by modifying the standard transfor-
mation [2] of one membership function to a set of focal elements, we arrive at an
extended set of focal elements with an associated basic probability assignment.
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Figure 3: Algorithm 2. Bel (Bd
s,k) and Planew(Bd

s,k) for s = 0.05, d = 0.375 (left)
and s = 0.05, d = 0.55 (right).

Algorithm 3:
Step 1: For α`, ` = 0, 1, . . . , Nα, infer the α`-cut Aα` by using (3) and the α`-cuts
Aα`i , ` = 0, 1, . . . , Nα.
Step 2: By setting g = mj and using (6), calculate Rα`

mj ,A
for j = 1, . . . ,M and

` = 0, 1, . . . , Nα.
Step 3: Interpret the intervals Rα`

mj ,A
as focal elements with the respective weights

wj/Nα.
Step 4: Choose an interval B ⊂ R and calculate Bel (B) and Pla (B) by using (7)
where S = {Rα`

mj ,A
}j=1,...,M ; `=0,...,Nα.

Step 5: Repeat Step 4 several times with the aim to increase Bel and Pla and to
identify an interval B that satisfactorily represents the joined responses of the models.
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1 Bel, d = 0.55

Pla, d = 0.55

Figure 4: Algorithm 3. Bel (Bd
s,k) and Pla (Bd

s,k) for s = 0.05, d = 0.375 (left) and
s = 0.05, d = 0.55 (right).
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The output of Algorithm 3 is depicted in Figure 4. Although more information on
fuzzy inputs was taken into account, i.e., more focal elements entered the calculations,
the graphs do not offer a definite identification of the intervals that best characterize
the join models’ outputs. Owing to a rather strong gain in Bel and a not bad Pla
level, one would probably prefer [7.75, 8.125] over the other intervals in the d = 0.375
family. If d = 0.55, then [7.45, 8] and [7.5, 8.05] seem to be equal candidates because
the loss in Bel is compensated by the gain in Pla and vice versa.

Finally, we can modify Algorithm 3 to get Algorithm 4. To this end, we refer
to (8) instead to (7) in Step 4. The output of Algorithm 4 is depicted in Figure 5.
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Figure 5: Algorithm 4. Bel (Bd
s,k) and Planew(Bd

s,k) for s = 0.05, d = 0.375 (left)
and s = 0.05, d = 0.55 (right).

Now, clearer conclusions can be made than in the case of Figure 4. The intervals
[7.75, 8.125] and [7.5, 8.05] seem to guarantee the strongest combination of the Bel
and Pla assessments within the two sequences of intervals.

4. Comments and conclusions

The advantage of Algorithm 1 and Algorithm 3 is not only computational (they
use the lowest number of focal elements) but also analytical because the uncertainty
analysis is limited to a particular α-cut of input data. Although Algorithm 2 and
Algorithm 4 make use of a richer family of focal elements, the picture of a multi-model
synergy might not be clearer. Take, for instance, a high value of Bel (B) for some
interval B. Then, the questions arise: What is the cause? Does B cover a significant
number of focal elements originating in several models, or does B cover a high number
of focal elements belonging to only one model? Remember, that the focal elements
associated with one model mj, i.e., j fixed, form a chain of intervals for which
Rα1
mj ,A
⊂ Rα2

mj ,A
if α2 < α1.

The probabilistic background of the evidence theory has been neglected in our
exposition. Nevertheless, Planew in (8) could be interpreted as the probability that
the crisp model response uniformly distributed in the interval I also falls into the
interval B.
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The reader might propose a modification of Algorithm 2 and Algorithm 4: to
infer the focal elements of the models’ responses, reduce the range of alphas and use,
for instance, α = 0.5, α = 0.75, and α = 1. This would certainly be possible, but
we can get the same effect by reshaping the membership functions and considering
α = 0, α = 0.5, and α = 1. In this way, we obtain the standard Algorithm 2 and
Algorithm 4.

What final conclusions can be made? To identify the intervals that most agree
with multi-model responses, it is advisable to apply Algorithm 2 for various but
individual values of α, and then Algorithm 4. Sufficiently rich and fine sequences of
intervals determined by various values of s and d should be used in the analysis.
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Abstract: The assessment of vibration characteristics in slender engineering
structures, influenced by both deterministic harmonic and stochastic excita-
tion, poses a challenging problem. Due to its complexity, transverse vibration
of the structure (relative to the wind direction) is typically modelled using the
single-degree-of-freedom van der Pol-type equation. Determining the response
probability density function comprises solving the Fokker-Planck equation,
a task that generally necessitates the use of approximate numerical methods.
Some of these methods rely on Galerkin-type approximation employing orthog-
onal polynomial or exponential-polynomial basis functions. This contribution
reviews available techniques for stationary and non-stationary cases and pro-
poses some modifications while highlighting unresolved questions in the field.
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1. Introduction

Exploring the nonlinear dynamic response on random excitation is an important
research subject. There are many analytical, semi-analytical, and numerical meth-
ods available to obtain stationary probability density functions (PDF) or statistical
moments, particularly focusing on systems influenced by Gaussian white noise. How-
ever, the non-stationary case remains the subject of intensive research.

The non-linear van der Pol type single-degree-of-freedom (SDOF) oscillator is
often used to represent transverse wind-induced vibrations under additive excitation,
including deterministic and random components. This particular type of an oscillator
is known and used for the so called lock-in or frequency entrainment effect, where
the response frequency, i.e., vibration frequency of the structure, does not follow the
dominant frequency present in the excitation but locks onto the natural frequency
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of the system. This effect appears in a certain neighbourhood of the frequency of
the stable limit cycle. Consequently, the oscillator produces very stable frequency
output even with noisy harmonic input, provided the driving frequency remains
within a certain proximity to the limit cycle frequency. Conversely, the response
may attain various types of non-stationary response, including the cyclo-stationary
or chaotic type when the driving frequency is far from the natural one.

The literature rarely addresses the van der Pol oscillator subjected to combined
harmonic and random excitations. The stationary response case has been explored
in [2], where the stochastic averaging method [5] and the equivalent linearization
method are used in conjunction. The authors in [7] investigated a similar scenario,
providing an explicit solution for the averaged equations in the resonant case. A more
general yet stationary case has been outlined by the authors using the Galerkin
method [6] to solve the nonlinear Fokker-Planck equation (FPE). The non-stationary
case has been presented only recently, [11], where the probabilistic solution of the
non-stationary responses is expressed as an exponential function of polynomial with
time-variant coefficients and then the FPE is solved approximately.

This contribution reviews several approaches for determining both stationary
and non-stationary response characteristics. For the stationary case, a method that
refines the analytical solution available under exact resonance conditions is outlined,
with a focus on the numerical integration procedure. In the non-stationary case,
two approaches based on the Galerkin method are discussed: one utilizes a time-
dependent linear combination of Hermite polynomials, while the other is based on
exponential polynomials.

2. Mathematical model

Wind-induced vibration due to vortex shedding in slender engineering structures,
such as bridge decks, towers, masts, high-rise buildings, or cables, is usually mod-
elled using van der Pol equation. Its self-excitation due to the negative damping
closely describes the state when the structure draws energy from the ambient flow.
Mathematically,

u̇ = v ,

v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t) ,

(1)

where time differentiation is indicated by a dot above the symbol and the system
parameters are:
u, v – the displacement [m] and velocity [ms−1];
η, ν – the linear and quadratic damping [s−1, s−1m−2];
ω0, ω – the eigen-frequency of the linear SDOF system and frequency of the vortex

shedding [s−1];
and the external excitation is described with: f(t) = Pω2 cosωt+hξ(t), where:
Pω2 – amplitude of the harmonic excitation [ms−2];
ξ(t) – the non-dimensional broadband Gaussian random process;
h – multiplicative constant [ms−2].
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In the deterministic case, there are four basic configurations that characterize the
solution in terms of frequency content and system solvability:

(i) The resonant case, where the excitation frequency is equal to the natural
frequency ω0 = ω. In this case the response of the model is periodic and, with
random additive excitation, there exists an explicit expression for the stationary
probability density of the response amplitude and phase shift [7].

(ii) When the frequency of the harmonic part of the right-hand side is close
to the model’s natural frequency, a lock-in effect occurs. The amplitudes of the
deterministic solution are constant, and the response in the presence of stationary
random disturbance remains stationary, [2, 6]. The width of the lock-in interval
depends on system parameters.

(iii) Just beyond the boundary of the lock-in interval, in the deterministic case,
a series of frequencies ωi emerge in the frequency content of the response in addi-
tion to the natural frequency ω0. The new frequencies move away from the natu-
ral frequency ω0, depending on the distance of the excitation frequency from the
boundary of the lock-in interval, approximately following the relationship ωi = ω0±
βi (ω − γ+)

di where γ+ is the upper boundary of the lock-in interval, and βi, di are
coefficients characteristic to the new frequencies. The presence of nearby frequencies
in the response process results in the emergence of long-period beats at a frequency
|ωi − ω0|, which give the response a quasiperiodic character. The analytic examina-
tion of this effect using the multiple scales method was recently published, [1].

This phenomenon causes ill conditioning of the behaviour of the van der Pol
equation, where small errors in the excitation frequency lead to large changes in the
nature of the solution. This effect is amplified in the presence of stochastic noise.

(iv) When the frequency of beats and the excitation frequency are comparable
and/or the influence of self-excitation diminishes, the system’s response is primarily
characterized by the harmonic component of the excitation (forced vibrations). The
response is periodic in the deterministic case and stationary in the stochastic case.

3. Stationary case

For weakly nonlinear systems subjected to weak excitations, the stochastic aver-
aging method [9] is commonly employed. This method involves replacing fast vari-
ables with statistically equivalent stochastic processes to analyse variables evolving
on a slower time-scale. The underlying assumption is that the response process can
be uniformly approximated over a given time interval.

Using the Itô stochastic calculus, the response PDF of the original differential
system Eq. (1) is governed by the Fokker-Planck Equation:

∂p(x, t)

∂t
= −

N∑
j=1

∂

∂xj
(κj(x, t)p(x, t)) +

1

2

N∑
j,k=1

∂2

∂xj∂xk
(κjk(x, t)p(x, t)), (2)

where x = (x1, x2) = (u, v), N = 2. The drift coefficients κj(x, t) correspond to the
first moment of the derivative, while the diffusion coefficients κjk(x, t) correspond to
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the second moment. In the case of a stationary response process, p(x, t) = p(x) and
the left-hand side of Eq. (1) vanishes. The resulting equation is referred to as the
reduced Fokker-Planck equation.

In the stochastic average method, the expressions for the displacement and ve-
locity u(t), v(t) are written in trigonometric form:

u(t) = ac cosωt+ as sinωt, v(t) = −acω sinωt+ asω cosωt, (3a)

where partial amplitudes ac, as comply with the additional condition

ȧc cosωt+ ȧs sinωt = 0. (3b)

In the general case, ac(τ), as(τ) are functions of the slow time τ = εt, where ε
is a small parameter, and may represent non-stationary processes. In the lock-in
region (i.e., in cases (i) and (ii) in the previous section), the response process is
stationary, and the partial amplitudes ac and as can be assumed stationary.

Based on the approximation Eq. (3), the original stochastic system Eq. (1) can
be transformed using the time-averaging operator into the averaged Itô system:

dac =
π

ω

[
ηac + 2∆as −

1

4
ν · ac(a2

c + a2
s)

]
dt+

(π
ω

Φξξ

) 1
2
dBc, (4a)

das =
π

ω

[
−2∆ac + ηas −

1

4
ν · as(a2

c + a2
s)

]
dt+

π

ω
Pω dt+

(π
ω

Φξξ

) 1
2
dBs. (4b)

Here Φξξ(ω) is the spectral density of the process ξ(t) at frequency ω, Bc,s(t) stands
for the Wiener process corresponding to input excitation ξ(t) and ∆ = (ω2

0−ω2)/(2ω)
is the frequency detuning.

The stationary PDF of ac, as follows from the reduced FPE:

∂

∂ac

([
ηac + 2∆as −

1

4
ν · ac(a2

c + a2
s)

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2
c

+
∂

∂as

([
ηas − 2∆ac −

1

4
ν · as(a2

c + a2
s) + Pω

]
p

)
− 1

2ω
Φξξ(ω)

∂2p

∂a2
s

= 0,

(5)

with boundary conditions assuring vanishing p(ac, as) for |ac|+ |as| → ∞. The differ-
ential system Eq. (5) admits a closed-form solution under zero detuning (see [6] and
Eq. (7)). The existence of such a solution depends on the existence of a probability
density potential, which occurs only when ∆ = 0.

3.1. Galerkin method

For non-zero detuning, but with a stationary response within the lock-in fre-
quency range, a solution to the reduced, stationary Fokker-Planck equation for par-
tial amplitudes can be sought in the form of a Galerkin approximation:

p(ac, as) = p0(ac, as)

M,k∑
k,l=0

qkla
k−l
c als, (6)
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where M is the upper limit of stochastic moments included into the analysis. In
Eq. (6), p0(ac, as) represents the weight function and is selected in the form of the
solution to the stationary FPE when ∆ = 0:

p0(ac, as) = C · exp

(
η

2S

[(
as +

Pω

η

)2

+ a2
c −

ν

8η

(
a2
c + a2

s

)2

])
, (7)

where S = Φξξ(ω)/(2ω) and the normalizing factor C is to be determined numerically.

When a harmonic component is present in the excitation, P 6= 0, the unsymmetric
weight function fails to ensure the orthogonality of Hermite polynomials. Thus, for
simplicity, standard polynomial basis and test functions are used, which, by virtue of
the weight function p0, satisfy the zero boundary conditions at infinity. For individual
values of k, the terms in the sum in Eq. (6) represent the k-th stochastic moment
and act as correction terms to the analytic solution for ∆ = 0.

3.2. Numerical integration

Integration in the Galerkin method takes place over the entire space R2, and
the coefficients qk,l for k, l = 0, . . . ,M ; k + l ≤ M are determined from the linear
system obtained by substituting Eq. (6) into the FPE (5), followed by several steps
of integration by parts and the application of homogeneous boundary conditions,
where the specific forms of the partial derivatives of p0(ac, as) were also taken into
account:

0 =

∫∫
R×R

{[
aσ−2
c as−2

s

(
σ(σ−1)a2

s − s(s−1)a2
c

)
S + ∆acas

(
σa2

s−sa2
c

)] M,k∑
k,l=0

qkla
k−l
c als

− S

[
s

d

das

(
aσc a

s−1
s

M,k∑
k,l=0

qkla
k−l
c als

)
−σ d

dac

(
aσ−1
c ass

M,k∑
k,l=0

qkla
k−l
c als

)]}
p0 dacdas.

(8)

where σ = (r − s), p0 = p0(ac, as).

Basis functions in the form of polynomials have poor numerical properties because
the corresponding Gram matrix is usually ill-conditioned. However, for low values of
M and with careful handling of the numerical integration, constructing the system
matrix is feasible, especially when the following considerations are taken into account:
Due to symmetry properties, terms involving odd powers of ac do not contribute to
the total value of the integral and should be skipped during integration to avoid
numerical cancellation. Additionally, the integral should be computed over the half-
plane ac > 0, with the result doubled. It is also convenient to transform the variables
into polar coordinates centred at the maximum value of the weight function. In this
way, the decrease of the integrand in the radial direction becomes roughly uniform.

The numerical integration in Eq. (6) involves a large number of terms of the form
zkl = p0(ac, as)a

k
ca

l
s; each of them approximately bounded from above on a logarith-

55



Figure 1: The Galerkin approximation of the stationary PDF for M = 2 and
detuning value ∆ = 0.10. a) Contour plot of the PDF. b) “Vertical” sections of the
PDF; as = {2, 3, 4}. c) “Horizontal” sections of the PDF; ac = {−3/2, 0, 3/2}. In
plots b,c: dashed is analytical solution p0(ac, as), solid is Galerkin solution p(ac, as).

mic scale by the following estimate

log |zkl| ≤
1

2S

(
η%2 − ν

8

(
Pω

η
− %
)4)

+ l log

(
%− Pω

η

)
+ k log(%);

ac =% cosϕ, ac = % sinϕ− Pω

η
.

(9)

The estimate Eq. (9) is useful for determining the required integration radius % and
identifying the terms that contribute to the total value of the integral.

3.3. Numerical example

The PDF of the stochastic van der Pol oscillator response with respect to partial
amplitudes ac, as is shown for M = 2 in Figure 1. The value of detuning δ = 0.10
still represents the lock-in response. The contour plot of the estimated cross-PDF
p(ac, as) is shown on the left. Plot b) depicts the sections of the PDF for fixed values
as = {2, 3, 4} and plot c) show sections for ac = {−3/2, 0, 3/2}. The sections and
the corresponding colors are indicated as horizontal/vertical lines in the left-hand
plots. The dashed curves show the basic analytical solution which is valid for the
case δ = 0, i.e., no detuning is assumed. The estimates including the M = 2 Galerkin
approximations are shown in solid.

4. Non-stationary response case

When studying the non-stationary case, the dependence on the original time
coordinate must be retained. The FPE reflecting the original stochastic problem
Eq. (1) in the original coordinates reads:

∂p(x, t)

∂t
= −

2∑
j=1

∂

∂xj
(κj(x, t)p(x, t)) +

1

2

2∑
j,k=1

∂2

∂xj∂xk
(κjk(x, t)p(x, t)), (10)
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where x = (u, v); x1 = u, x2 = v. The input random process ξ(t) is considered sta-
tionary and ergodic and the drift and diffusion coefficients can be written in a form:

κj(xt, t) = fj(xt, t) , κjk(xt, t) =
2∑
r=1

gjr(xt, t)

∞∫
−∞

gkr(xt+τ , t+ τ)R(τ)dτ,

j, k = 1, 2,

(11)

where R(τ) is the auto-correlation function of ξ(t).
Assuming that the detuning ∆ ∼ ε and the terms (η − νu2)u̇ and Pω2 are of

a small order ε, and hξ(t) is of order ε1/2. In such a case the FPE can be constructed
for the SDE Eq. (1). It holds obviously:

κ1 = v , κ2 = (η − νu2)v − ω2
0u− Pω2 cosωt,

g11 = g12 = g21 = 0 , g22 = h,

κ11 = κ12 = κ21 = 0 , κ22 = g22

∞∫
−∞

g22Rvv(τ)dτ = h2σ2
ξξ = h2 S,

(12)

where S is the variance of the process ξ(t). Take a note that κ22 = h2S is valid inde-
pendently from a particular shape of the input process spectral density and formally
it corresponds to the special case of ξ, which is the white noise (δ correlated), pro-
vided the excitation is a non-modulated additive stationary ergodic process. Anyway,
the FPE can be readily written out as follows:

∂p

∂t
= − ∂

∂u
(v p)− ∂

∂v

((
(η − νu2)v − ω2

0u− Pω2 cosωt
)
p
)

+
1

2
h2S

∂2p

∂v2
, (13)

together with initial and boundary conditions:

lim
u,v→±∞

p(u, v, t) = 0, p(u, v, 0) = δ(u, v). (14)

Near the boundary of the lock-in interval, the solution exhibits a quasi-periodic
nature, which can be identified using a Galerkin-series-based solution in a form:

p(u, v, t) = p0(u, v)
M∑
k=0

k∑
l=0

qkl(u, v, t). (15)

The series Eq. (15) represents a weak solution to the FPE in the probabilistic
sense. Choices of the weight function p0(u, v) and an approximation scheme used for
terms qkl classify the available methods.

4.1. Galerkin solution based on Hermite polynomials

The challenges associated with numerical integration, discussed in the preceding
section, have motivated the use of Hermite polynomials as basis functions which
approximate the residuum between the weight function in the Galerkin method and
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the solution of the FPE. However, the weight function must be adjusted to maintain
the orthogonality property of the Hermite polynomials.

The elements qkl are formulated as follows:

qkl(u, v, t) = qkl(t)Lk−l(αu)Ll(βv), α2 =
ηω2

0

h2S
, β2 =

η

h2S
, (16)

where Lk(x) are Hermite polynomials.
The weight function p0(u, v) is adopted in a form of the Boltzmann’s solution to

a related problem without damping and external excitation, [3]. In particular:

p0(u, v) = C exp

(
− 2η

h2S
H(u, v)

)
, (17)

where C is the dimensionless normalizing constant, which can be put for now C = 1.
H(u, v) represents the Hamiltonian function of the basic system:

H(u, v) =
1

2
ω2

0u
2 +

1

2
v2, (18)

which implicates p0(u, v) = pu(u)pv(v), so that u, v are stochastically independent
Gaussian processes on a level of the zero-th approximation.

The unknown functions qkl(u, v, t) in Eq. (16) are determined using the general-
ized method of stochastic moments [8]. The expression from Eq. (15) is substituted
into Eq. (13), and both sides are multiplied by the test functions Φrs(u, v), which
has the same formal expression as Eq. (16):

Φrs(u, v) = Lr−s(αu)Ls(βv), r = 0, . . . ,M ; s = 0, . . . , r. (19)

Subsequently, applying the expectation operator (which, in fact, involves integration
over R2) to all permutations of the subscripts r and s establishes a sufficient number
of ordinary differential equations for the unknown functions qkl(u, v, t).

Employing Hermite polynomials reduces computational cost and associated nu-
merical errors. However, empirical evidence suggests that the convergence is rela-
tively slow and, moreover, these basis functions do not guarantee the non-negativity
of the computed PDF estimates, which can pose a substantial problem.

4.2. Exponential-polynomial-closure method

The issue of negative PDF estimates does not arise when using the exponential-
polynomial-closure method (EPC), [4]. In the original stationary setting, it assumes
the sought PDF of an approximate solution in the form of an exponential polynomial:

p̃(u, v; c) = C exp (Qn(u, v; c)) . (20)

Here, c is the unknown parameter vector, and Qn(u, v; c) is a polynomial function.
The algebraic system for unknown parameters c results from the Galerkin approxima-
tion with respect to basis functions hk(u, v) = urvsfN(u, v), where k = r+ s and fN
is the PDF solution of the linearised Eq. (1) assuming the Gaussian response.
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Multiple variants of the EPC method have been proposed for different settings
of the stationary PDF solutions of nonlinear stochastic oscillators. Modifications for
the non-linear, non-stationary case have only recently emerged, implicitly allowing
for non-Gaussian excitation, [10]. The solution is assumed in an evolutionary form:

p̃(u, v, t; c) = C exp (Qn(u, v, t; c)) , Qn(u, v, t; c) =
n∑
i=1

i∑
j=1

cij(t)u
i−jvj. (21)

Denoting by ∆(u, v, t; c) the residuum obtained by substitution Eq. (21) into the
FPE (13), a set of ODEs for unknown parameters c(t) = {cij(t)} result from∫∫

R×R
∆(u, v, t; c)hk(u, v)dudv = 0, k = 1 . . .M, (22)

where M indicates number of stochastic moments included into the solution.

5. Conclusions

The solution to the stochastic van der Pol equation is generally non-stationary
and non-Gaussian, making its characterization a significant challenge. This paper
reviews several approaches for determining both stationary and non-stationary re-
sponse characteristics.

For the stationary case, the presented method is based the stochastic averag-
ing method. The PDF for non-resonant configurations is approximated using the
Galerkin method, where improper integrals are evaluated numerically. For this case,
some new remarks regarding numerical integration were presented. However, due
to the limitations of numerical integration for higher-degree polynomials, alternative
basis functions are essential for exploiting higher stochastic moments.

Determining the non-stationary response relies on the Galerkin method, which
must account for the time-dependence of the probability density. The paper explores
two implementations. One approach utilizes a Boltzmann-type solution as the weight
function and Hermite polynomials as basis and test functions in the Galerkin approx-
imations. However, Hermite polynomials do not guarantee the non-negativity of the
estimated PDF. As an alternative, the exponential-polynomial closure method is re-
viewed. It employs a Gaussian-closure solution of the linearised system as the weight
function and exponential polynomials as basis and test functions. Based on exist-
ing literature, the EPC method is expected to outperform the previous approach.
A comparative analysis of these implementations will be addressed in future work.
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Abstract: The paper deals with the analysis and numerical study of the
domain decomposition based preconditioner for algebraic systems arising from
the discontinuous Galerkin (DG) discretization of the linear elliptic problems.
We introduce the DG discretization of the model problem and present the
spectral hp-bound of the corresponding linear algebraic systems. Moreover,
we present the two-level additive Schwarz preconditioner together with the
theoretical result related to the estimate of the condition number. Finally,
we present the numerical experiments supporting the theoretical results and
demonstrate the efficiency of this approach for the solution of nonlinear prob-
lems.
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1. Introduction

Discontinuous Galerkin method (DGM) became a very popular method for solv-
ing partial differential equations, cf. [5]. DGM is based on a piecewise polynomial
but discontinuous approximation where the inter-element continuity is replaced by
special terms. The DGM exhibits a very robust, accurate, and efficient technique
for various problems. On the other side the DG discretization leads to large sparse
algebraic systems, whose solution usually exhibits the most time-consuming part of
the whole computational process.

The domain decomposition techniques exhibit a powerful strategy, which allows
to split the computational work and employ the parallel power of modern supercom-
puters. One possibility is to split the given problem in several smaller sub-problems
with suitably chosen interface conditions, and solve them iteratively to coordinate
the solution between neighbouring subdomains, cf. monographs [3, 11]. However,
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more frequent is to use the domain decomposition methods as preconditioners for
Krylov subspace iterative methods, such as the conjugate gradient method. In this
paper, we focus on the two-level additive Schwarz (AS) preconditioner (cf. [2, 9]).
In particular, we present theoretical results related to the condition number of the
preconditioned system and several numerical examples demonstrating the efficiency
of this technique.

In Section 2, we introduce the discretization of the linear model problem by
hp-variant of the discontinuous Galerkin method (DGM), and present the hp-bound
of the condition number of the corresponding algebraic system. In Section 3, we
formulate the two-level additive Schwarz preconditioner and present the bounds of
the condition number of the preconditioned system arising from DGM. In Section 4,
we introduce the results of numerical experiments performed to support the analysis.
These experiments are the main contribution since they show that the approach also
works for nonlinear cases and leads to improved computational time when used with
the parallel computations. Several concluding remarks are given in Section 5.

2. Discontinuous Galerkin method

We are dealing with the following symmetric linear elliptic problem

−div(K∇u) = f in Ω

u = 0 on ∂Ω,
(1)

where Ω ∈ Rd, d = 2, 3 is a bounded domain with polygonal Lipschitz bound-
ary ∂Ω and K = K(x) is a symmetric positive definite matrix in Rd×d. We assume
that ∃k0, k1 > 0, independent of x ∈ Ω, such that k0|ξ| ≤ |Kξ| ≤ k1|ξ| ∀ξ ∈ Rd.
For simplicity, we assume the homogeneous Dirichlet boundary condition, however
the results can be easily extended to other boundary conditions. Finally, we use the
notation L2(M) for the Lebesgue space of square-integrable functions over M ⊂ Rd,
d = 2, 3 and we denote by (·, ·)Ω the standard inner product in L2(Ω).

2.1. Discretization of domain Ω

Let Th, h > 0 be a partition of the domain Ω̄ into non-overlapping triangles K
such that

⋃
K∈Th K = Ω. We set h = maxK∈Th hK , where hK is the diameter of the

element K, K ∈ Th, and we denote by ∂K the boundary of K ∈ Th.
In addition, let Fh be the set of all faces γ of Th and we put

FBh = {γ ∈ Fh : γ ⊂ ∂Ω} and F Ih = Fh \ FBh

for boundary and interior edges, respectively. For each γ ∈ F Ih we consider a unit
normal vector nγ whose orientation can be arbitrarily chosen. If γ ∈ FBh , the unit
normal nγ is outer to ∂Ω.

Let p := {pK : K ∈ Th} be a set of integers that assigns to each triangular element
its polynomial degree of approximation. We assume that the ratio of polynomial
approximation degrees of any two neighboring elements is bounded.
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The approximate solution is sought in the space of discontinuous piecewise poly-
nomial functions

Shp := {v ∈ L2(Ω) : v|K ∈ PpK (K)∀K ∈ Th},

where PpK (K) denotes the space of polynomials of degree less or equal than pK on K.
By v|+ and v|− we denote the traces of function v ∈ Shp on γ ∈ F Ih in the direction

of nγ and opposite the direction of nγ, respectively. Using this notation we define
the jump [·]γ and the mean value 〈·〉γ of v ∈ Shp by

[v]γ = v|+nγ − v|−nγ and 〈v〉γ =
1

2
(v|+ + v|−), γ ∈ F Ih , (2)

respectively. For γ ∈ FBh , we set [v]γ = vnγ and 〈v〉γ = v. Usually, we drop the
subscript γ.

Finally, we assume that the mesh is shape-regular and quasi-uniform. Then we
set the edge size by

hγ := max(hK , hK′) γ ⊂ ∂K ∩ ∂K ′.

More details can be found in [5, Chapter 2.3].

2.2. Primal formulation of DGM

We introduce the approximate solution of our problem, more details can be found,
e.g., in [5, Chapter 2.4]. Using (2), we define the billinear form Ah(u, v) by

Ah(u, v) :=
∑
K∈Th

∫
K

K∇u · ∇v dx−
∑
γ∈FI

h

∫
γ

(〈K∇u〉 · [v] + 〈K∇v〉 · [u]) dS

+
∑
γ∈FI

h

∫
γ

σ [u] [v] dS, u, v ∈ Shp.

The last term is called the interior penalty term and is supposed to mimic the
continuity of the approximate solution at the interior edges. The penalty parameter
σ is given by

σ|γ = σγ = α
k0p

2
γ

hγ
, γ ∈ F Ih ,

where the constant α is chosen such that we have guaranteed the coercivity of the
form Ah, see [5, Chapter 2.6.3].

Definition 1. The function uh ∈ Shp is called the approximate solution of (1) if

Ah(uh, v) = (f, v)Ω ∀v ∈ Shp. (3)

This scheme is called the symmetric interior penalty Galerkin (SIPG) method.
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The discrete problem (3) is equivalent to the system of linear algebraic equations

Au = f , (4)

where A is the matrix having the size n equal to dimension of Shp and the entries of A
are given by Ah(φj, φi), where {φi, i = 1, . . . , n} is a basis of Shp. If the size of A is
large, the use of iterative solvers is advantageous. Very efficient are methods based on
Krylov subspaces, among them the conjugate gradient (CG) method is very popular
for symmetric problems. The rate of convergence of CG can be estimated by the
condition number, cf. [10, Chapter 6.11]. In [2, Section 2.4] and [8, Section 2], the
following estimate of the condition number of A from (4) was derived

κ(A) ≤ C
k1

k0

p4h−2 (5)

for uniform grids having mesh step h and constant polynomial approximation de-
gree p. We aim to use the domain decomposition to construct suitable preconditioner
for the algebraic system (4), such that it decreases its condition number and can be
performed in parallel setting.

3. Additive Schwarz preconditioner

We start with the partition of the computational domain Ω into smaller non-
overlapping subdomains Ωi such that Ω =

⋃N
i=1 Ωi. We assume that the subdo-

mains Ωi are the union of elements of Th. We employ two-level method, hence we
define a coarse mesh TH such that K ∈ TH lies in one subdomain Ωi. We assume
that the partitions are nested, i.e. the elements from a coarser mesh are the union
of elements of finer mesh, these elements can be non-convex, see Figure 1 for two
examples.
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Figure 1: Examples of two fine meshes Th (red, thin), subdomains Ωi (blue, thick)
and coarse meshes TH (green, thin).
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In the following, we introduce the local bilinear forms corresponding to the re-
striction of Ah on the subdomains Ωi, i = 1, . . . , N and the coarse (global) form
corresponding to the restriction of Ah on the coarse mesh TH . The forms build
the projection operators which are used for the definition of the two-level additive
Schwarz preconditioner. For more details, we refer to, e.g, [1, 2].

3.1. Local forms

We consider a restriction of the space Shp onto each sub-domain Ωi, i = 1, . . . , N ,
i.e.

Sihp = {u ∈ L2(Ωi) : u|K ∈ PpK , K ∈ Th, K ⊂ Ωi}, i = 1, . . . , N.

We define the prolongation operators RT
i : Sihp → Shp by

RT
i ui =

{
ui on Ωi,

0 on Ω \ Ωi,
ui ∈ Sihp.

The corresponding (dual) restriction operatorsRi : Shp → Sihp are given byRiu = u|Ωi
,

i = 1, . . . , N . Then, we introduce the local bilinear forms Ah,i

Ah,i(ui, vi) := Ah(RT
i ui, R

T
i vi), ui, vi ∈ Sihp, i = 1, . . . N.

Using the prolongation operators, we can express functions from the space Shp as
a linear combination of functions from the local spaces.

3.2. Coarse form

In order to increase the speed of the transfer of the information among the sub-
domains, we formulate the problem on the coarse space S0

hp corresponding to the
mesh TH . To deal with the inconsistency of the polynomial degree, we introduce the
quantity qK, K ∈ TH defined by

0 ≤ qK ≤ min
K⊂K

pK .

The definition of the coarse space S0
hp is done similary as in the local space case, i.e.

S0
Hp := {v ∈ L2(Ω) : v|K ∈ PqK(K), K ∈ TH}

Moreover, we define the prolongation operator RT
0 : S0

Hp → Shp as a classical injection
of the space S0

Hp in Shp, and restriction operator R0 : SHp → S0
hp as its dual. Then,

we set

Ah,0(u0, v0) := Ah(RT
0 u0, R

T
0 v0), u0, v0 ∈ S0

Hp.
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3.3. Projection and preconditioned operators

Finally we define the local projection operators P̃i, i = 0, . . . , N which project
the function onto the space Sihp using the local forms Ah,i. Namely,

P̃i : Shp → Sihp Ah,i(P̃iu, vi) = Ah(u,RT
i vi) ∀vi ∈ Sihp, i = 0, . . . , N.

For the projector on the space Shp we use the definition

Pi := RT
i P̃i : Shp → Shp, i = 0, . . . , N.

Finally, the two-level additive Schwarz operator reads

Pad :=
N∑
i=0

Pi. (6)

3.4. Algebraic representation

We introduce the algebraic representation of the local bilinear forms Ah,i and
the projector operators P̃i and Pi, i = 0, . . . , N from previous paragraphs. Let
n = dim(Shp), ni = dim(Sihp), i = 1, . . . , N , and n0 = dim(S0

Hp). Let RT
i ∈ Rn×ni ,

i = 0, . . . , N be the matrices corresponding to the prolongation operators RT
i with

respect to the used basis of Shp. Their construction is simple since Sihp ⊂ Shp,
i = 1, . . . , N and S0

Hp ⊂ Shp. Then the algebraic representations of the restriction
operators Ri, i = 0, . . . , N are just the transposed matrices Ri = (RT

i )T .
Moreover, the algebraic representation of the local bilinear formsAh,i are matrices

Ai = RiART
i ∈ Rni×ni , i = 0, . . . , N . Consequently, the matrix representation of

projection operators P̃i and Pi reads

P̃i = A−1
i RiA and Pi = RT

i A
−1
i RiA, i = 0, . . . , N,

respectively. Finally, the matrix representation of the additive Schwarz operator is
given by

Pad =
N∑
i=0

Pi =
N∑
i=0

RT
i A

−1
i RiA =: M−1

ad A. (7)

Hence, the matrix M−1
ad is a preconditioner of system (4) arising from DG discretiza-

tion. Therefore, we replace (4) by the equivalent problem

M−1
ad Au = M−1

ad f , (8)

where the application of M−1
ad exhibits a solution of small algebraic systems which

can be done in a parallel way. For the solution of (8), we use standard Krylov
iterative solver, namely the conjugate gradient (CG) method. More details on the
solver can be found in [10, Chapter 6].
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3.5. Analysis of the preconditioner

In this section, we present the upper bound of the condition number of the matrix
Pad = M−1

ad A using the abstract technique from [11, Chapter 2], which is based on
the following three assumptions.

Assumption 1 (Stable decomposition) There exists a constant C0 > 0 such that
∀u ∈ Shp we have the decomposition u =

∑N
i=0 R

T
i ui, with u0 ∈ S0

Hp, ui ∈ Sihp,

i = 1, . . . , N , that satisfies
∑N

i=0Ah,i(ui, ui) ≤ C2
0Ah(u, u).

Assumption 2 (Local stability) There exists a constant ω, 0 ≤ ω ≤ 2, such that

Ah(RT
i ui, R

T
i ui) ≤ ωAh,i(ui, ui) ∀ui ∈ Sihp, i = 1, . . . , N,

Ah(RT
0 u0, R

T
0 u0) ≤ ωAh,0(u0, u0) ∀u0 ∈ S0

Hp.

Assumption 3 (Strengthened Cauchy-Schwarz inequalities) There exist con-
stants 0 ≤ εij ≤ 1, i, j = 1, . . . , N , such that

|Ah(RT
i ui, R

T
j uj)| ≤ εijAh(RT

i ui, R
T
i ui)

1
2Ah(RT

j uj, R
T
j uj)

1
2 , i, j = 1, . . . N,

for all ui ∈ Sihp, uj ∈ S
j
hp. By ρ(ε) we denote the spectral radius of ε = {εij}Ni,j=0

Using [11, Theorem 2.7], we have the following results.

Theorem 1. Let Assumptions 1–3 be satisfied. Then the condition number of the
two-level additive Schwarz operator can be bounded by

κ(Pad) ≤ C2
0 ω (ρ(ε) + 1).

Verifying Assumptions 1–3 for the presented additive Schwarz formulation and
using Theorem 1, cf. [2, 9], we get the bound

κ(Pad) ≤ Cα
p2Hk1

qhk0

, (9)

where Pad is given by (7).

4. Numerical study

The objective of this section is to numerically compute the bounds (5) and (9)
and to demonstrate their accuracy. We focus on the experiments dealing with the
condition number of the non-preconditioned systems and also the preconditioned
systems. In the end, we show that the application of this approach can be used to
solve non-linear problems.

All experiments were performed using the ADGFEM code [4] for the generation
of the system matrices and then exported to MATLAB, where we used the func-
tion eigs to compute the approximations of the largest and smallest eigenvalues
of A and M−1

ad A. Then we set the condition number as the ratio of the largest and
smallest eigenvalues. This approach is valid since we are dealing with symmetric
positive definite matrices. We investigate the dependence of condition number κ(A)
and κ(M−1

ad A) on the parameters h, H, p and the ratio of k1/k0 as we have seen.
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Figure 2: The dependence of κ(A) (NON) and κ(M−1
ad A) (ASM) on the polynomial

degree p (left) and on the mesh size h using p = 1 (right).

It is important to say that similar numerical examples were performed in [8],
but there we had not quite correct implementation of system matrix generation and
the condition number was computed using the function condest, which computes
different type of condition number.

4.1. Laplace equation

We consider the problem (1) with K = I, where I is the identity matrix and with
Ω = (0, 1)2. The corresponding mesh is on the left of Figure 1. Since k0 = k1 = 1
the results (5) and (9) depend only on h, H and p. Similarly as in [2], we plot the
dependence of κ(A) in logarithmic scale to see the slope.

• First, we investigate the dependence of κ(A) and κ(M−1
ad A) on p for two

uniform meshes having (approximately) 125 and 250 elements. We set N = 12,
each Ωi is one coarse element, and the coarse polynomial degree is set q = p.

• Moreover, we investigate the dependence of κ(A) on h for p = 1, where we use
meshes having 128, 288, 512 and 1152 mesh elements.

Figure 2, left shows that κ(A) behaves as O(p4) and κ(M−1
ad A) behaves as O(p)

which is in agreement with (5) and (9). Moreover, Figure 2, right shows that κ(A)
behaves as O(h2) and O(h), which is again expected based on the result (5) and (9),
respectively.

4.2. Symmetric linear elliptic equation

Furthermore, we deal with a linearization of the example from [7, Section 5.4].
This corresponds to a simulation of the magnetostatic field in the alternator. Due
to symmetry, we consider only a quarter of the alternator. The domain Ω is divided
into Ωs (Stator), Ωr (Rotor), and Ωa (Air) (geometry can be seen in [8, Figure 3.6]).
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Figure 3: The dependence of the condition number of the preconditioned system
(ASM) on the coarse mesh size (left) and the dependence of the condition number of
the preconditioned and non-preconditioned system on the ration of k1/k0 for p = 1
and p = 2 (right).

The corresponding mesh can be seen on the right of Figure 1. The formulation in
terms of the magnetic potential u reads:

−div(ν(x)∇u(x)) = f in Ω, (10)

where ν is in the form ν(x) =

{
1
µ0

for x ∈ Ωa,
100
µ0

for x ∈ Ωs ∪ Ωa,
where µ0 = 1.256 · 10−6.

We use the same technique as described above to generate system matrices and
compute the condition number. We focus on the following.

• We investigate the dependence of κ(M−1
ad A) on the coarse mesh size H with

p = 1 and N = 12 and the division of the subdomains Ωi into 1,2,4,8 and
12 coarse elements.

• We investigate the dependence of κ(A) and κ(M−1
ad A) on the ratio of k1/k0

for p = 1.

Figure 3, left supports the theoretical result κ(M−1
ad A) = O(H), at least asymp-

totically. Figure 3, right gives that the dependency on the ratio of k1/k0 is also in
agreement with the result (5) and (9), in which we see that κ(M−1

ad A) and κ(A)
behaves as O(k1/k0). We can see that we are getting slightly better result for the
preconditioned system than we expected.

4.3. Symmetric nonlinear elliptic equation

Finally we present numerical result for the nonlinear variant of the alternator
equation (10), namely

−div(ν(x, |∇u(x)|2)∇u(x)) = f in Ω,
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N non-linear iter linear iter time on 1 processor theoretical time×2
#Ωi

4 81 7049 158 s 79 s
8 71 8073 158 s 39 s
16 68 8939 156 s 19 s
32 71 10493 194 s 12 s
64 70 11649 230 s 7 s

Table 1: Number of iterations and the computational time for increasing number of
subdomains.

where the function ν is a strongly nonlinear function in |∇u(x)|, see [7, Section 5.4]
for the explicit form of ν. The nonlinear problem is solved as a sequence of linear
ones, namely

−div(ν(x, |∇uk−1|)∇uk) = f in Ω, k = 1, 2, . . .

where k is the index of nonlinear iterations. In every non-linear iteration we compute
100 linear iterations. As the linear solver we used conjugate gradient method with
the two-level additive Schwarz preconditioner (7). The stopping criterion was the
ratio of algebraic residual error estimator over the space residual error estimator,
cf. [6].

We investigate the speed of convergence for increasing number of subdomains
N = #Ωi, each Ωi is just one coarse element K ∈ TH . The number of conjugate
gradient iterations and computational time in seconds (using one processor) is shown
in Table 1. Although the computations were performed using one processor, we
present in the last column of Table 1 the theoretical computational time using an
ideal parallelization, i.e., one processor for one subdomain (excluding overheads).
We observe an almost optimal speed up of the computation.

5. Conclusion

We presented the outline of the theory used for the condition number bounds of
the two-level additive Schwarz preconditioner for the solution of partial differential
equations using DGM. The main part of our work was the numerical study done on
a more complex example and also the application of the method for the non-linear
problem. We have shown that the method has potential for non-linear problems and
can be further investigated.
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Abstract: The following possibilities of reduction of dimension in the com-
putational analysis of strain and stresses transferred to the subsoil massive are
available: i) coming from the effective subsoil model by Kolář & Němec (1989),
based on the assumptions of the Pasternak’s model (1954), where the pair of
material parameters of a surface model is evaluated from the energy equiva-
lence, ii) reducing a large sparse matrix of soil massive stiffness to a smaller
one, using Schur’s complement technique. In both cases i), ii) the steady-state
analysis is decisive: inclusion of more complicated combination of loads can
be performed without repeated computations.
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1. Introduction

Evaluation of the soil-rock mass interaction represents a key element in geotech-
nical engineering, which deals with analysing geological conditions, soil composition,
and the physical properties of the subsoil. This information constitutes essential in-
put data for numerical modelling, allowing the simulation of soil-rock mass behaviour
under various conditions. When modelling soil-rock masses, it is important to take
various factors into account, such as rock types, soil composition, groundwater levels,
and other geotechnical parameters. This information enables us to create a realistic
representation of the subsoil, and its response to external influences, such as loading
from building structures.
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Numerical modelling of the subsoil is essential for the proper design of building
structures, especially of their foundations. In the early years of numerical modelling,
the subsoil and the structure were treated separately, with no mutual influence,
due to the computational complexity and the division between two design teams
(geotechnics and structural engineering). This approach worked for simple struc-
tures and subsoil conditions (the soil environment under the foundations). For more
complex structures, such as dams, high-rise buildings, tunnels, or large underground
constructions, a model of the subsoil in interaction with the superstructure is needed,
including deformations, tilts and stability considerations, to support the adaptation
of foundation design to specific conditions of the given area and the particular struc-
ture. However, such advanced modelling techniques require higher computational
power and more detailed input data, which must be gathered through geological sur-
veys. Therefore, an essential engineering requirement is to consider the complexity
of numerical modelling for various classes of structures reliably and economically.

After this brief motivation (1st section), we shall demonstrate the possibility
of modelling the soil-rock mass in interaction with the structure, starting with
the physical and mathematical background, including some historical remarks (2nd
section). Then the computational design and software implementation (3rd section)
is presented, supplied by an illustrative example (4th section) and followed by the
sketch of possible generalizations, related to the research priorities for the near future
(5th section).

2. Physical and mathematical background

Numerous theories for the modelling of a structure together with its subsoil
can be classified by their characterization of subsoil properties and their approach
to structure-subsoil interaction. Unlike simple (semi-)analytical historical formu-
lae, such theories can handle viscoelastic and / or viscoplastic behaviour including
damage to both a structure and its subsoil due to the class of rather general consti-
tutive models, as presented by [22] and [33] and implemented into the RFEM soft-
ware package (developed in collaboration with FEM consulting Brno with Dlubal
Software Tiefenbach). In this short paper, we shall pay attention to the effective
subsoil incorporation into the design of structures. The (quasi-)static approach will
be preferred for simplicity; for its modification required by dynamic calculations
see [29], for the extensive review of traditional and advanced computational tech-
niques cf. [12].

2.1. Classical theories

The classical analytical models can be derived from the Boussinesq’s theory [4],
which focuses on the behaviour of subsoil under a single isolated force. A homoge-
neous isotropic subsoil which is defined by two key parameters: Young’s modulus
of elasticity E [Pa] and Poisson’s ratio ν [–]. Consequently a full 3-dimensional
model in the Cartesian coordinate system (x, y, z) can be formulated, using displace-
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ments (non-zero in general, related to the initial configuration) u(x, y, z), v(x, y, z),
w(x, y, z). Its later modification, well-known as the Westergaard’s theory [36], focuses
on the non-uniform distribution of pressure on the foundation surface, adding correc-
tions for wider foundations; the zero-valued u and v are considered, for more details
in the modern formulation see [8]. Another significant contribution is the Mindlin’s
theory [21] where a closed-form solution for the displacement field caused by hori-
zontal and vertical forces acting at any point in an elastic half-space can be found.

Biot’s theory [3] describes the interactions in a porous elastic medium filled with
an incompressible fluid; so-called Terzaghi-Wegmann’s model [32] can be seen as an
application of this theory in engineering practice, namely for the analysis of the influ-
ence of foundation geometry on subsoil stresses. Skempton’s model [31] is frequently
employed for analyzing subsoil deformations induced by shrinkage. Seed-Idriss’s
theory [30] contributes to the analysis of the behaviour of a cohesive subsoil under
dynamic loading, namely in seismically active areas. Vesić’s theory [35] describes
the behaviour of soft subsoil under a foundation: the pore pressure within the sub-
soil is regarded as the combined effect of foundation-induced stress and hydrostatic
pressure. Janbu-Meyerhof’s approach [14] addresses the analysis of slope stability,
accounting for the influence of the foundation on a plastic subsoil.

2.2. Winkler’s and Pasternak’s models

Simple (but still frequently used) Winkler’s subsoil model [37] needs only one
parameter C1 [N/m3], the vertical modulus of compressibility (coefficient of support).
Since the displacements u and v are supposed to be negligible in comparison to
w, we can take w(x, y, z) = w̃(x, y)ψ(z), ψ is a prescribed function. The stress
p under a foundation structure (and also the subsoil reaction) can be expressed
as p(x, y) = C1w̃(x, y). The disadvantage of this model is the omission of shear
stresses, which can lead to a sudden change in deformation immediately at the edge
of the foundation structure where the deformation is zero, see Fig. 1, part A).

Figure 1: Subsoil models: A) 1 parameter by Winkler, B) 2 parameters by Pasternak.

Later studies try to suppress such a disadvantage, cf. [11]. In Pasternak’s mo-
del [24], Winkler’s model is extended by the parameter C2 [N/m], which takes the
effect of both normal and shear stresses into account, i. e. (under the assumption of
isotropic behaviour of a subsoil, for simplicity here) p(x, y) = C1w̃(x, y)−C2∆w̃(x, y),
utilizing the Laplace operator ∆ = ∂2/∂x2 +∂2/∂y2; cf. Fig. 1, part B). A more gen-
eral class of foundation models of this type, involving additional parameters typically
is introduced in [16]; for their detailed classification and numerous historical remarks
cf. [19], [10] and [34].
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2.3. Full 3-dimensional models

The 3-dimensional modelling requires the computational analysis of boundary
value problems for partial differential equations, for a building structure and its sub-
soil separately, rarely reducible to those well-known from linear elasticity, together
with a detailed analysis of all corresponding interfaces, thus rare (semi-)analytical so-
lutions are available and an appropriate numerical approach is needed, based on the
finite element techniques by [2] typically, as [22], [23] and [15]; another approach [1]
relies on the boundary element method and certain integrals transforms.

Such approaches enable us to perform various specialized studies, such as stability
analysis, permeability analysis of the subsoil, slope stability analysis, and seismic
behaviour and response analysis of the subsoil. The proper analysis of complex
shapes of subsoil layers and intricate structures, as well as their mutual interactions,
can be seen as the principal advantage of this approach. Nevertheless, its evident
disadvantages must be mentioned, too: at least i) rather high hardware and software
requirements, ii) a tricky choice of the appropriate size of subsoil area, iii strong
dependency of the reliability of all results on the correct choice of parameters and
model validation, which must be provided by the user everywhere for ii), cf. [20]. In
particular, in [17] the subsoil model is extended to a distance of approximately 115 m
from the structure.

From the point of view of ii), the linear elastic model can be appreciated as sim-
ple and effective, allowing easy simulation of soil deformations under low stresses.
Beyond this simplification, higher stresses lead to irreversible plastic (or viscous,
etc.) deformations, as evaluable from historical Mohr-Coulomb’s model [6], upgraded
by [25], from later Drucker-Prager’s [9] or Hoek-Brown’s [13] ones, or from those de-
veloped especially from the soil analysis, referenced as Cam-Clay [26], working with
a relation between stress, strain, and porosity, and Hardening Soil [27] for cyclic
loading.

3. Computational approach

The subsoil can be modelled using the computational approaches mentioned
in the 2nd section. The implementation into RFEM software makes it possible
to perform a wide range of mechanical analyses, simplifying the analysis of the sub-
soil and its interaction with the structure. This is especially important in such tasks
where only some specific loading cases influence the subsoil significantly.

3.1. Stress in the subsoil

In the analysis of stress within the subsoil, various types of stress arising from
loading and site conditions can play a crucial role. The vertical (normal) stress
is determined using the following formula σz = γh where h is the depth of the
layer in the soil and γ is the unit weight of the soil. The horizontal (lateral) stress
can be expressed as σx = Kbσz where the lateral dimensionless pressure coefficient Kb

depends on the type of soil: i) for cohesive soils it is considered as Kb = ν/(1 − ν)
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(cf. Subsection 2.1), whereas ii) for granular (cohesion-free) soils the relation Kb =
1− sinφ is used, φ is the angle of internal friction. In the case that the groundwater
level occurs, the total stress is usually expressed as σtot = σeff + u where the pore
pressure u = γuh depends on one additional constant γu and the effective stress
σeff = γsuh, γsu is the unit weight of dry soil.

Namely the stress at a depth z in an elastic, homogeneous, and isotropic soil
caused by a single point load P with ν = 0 can be determined by Boussinesq as

σz =
3P

2πz2
(
1 + (r/z)2)5/2

.

By Westergaard, infinitely thin soil layers are assumed, together with 0 ≤ ν < 1,
which results

σz =
P (1− 2ν)(2− 2ν)

2πz2
(
(1− 2ν)/(2− ν) + (r/z)2)3/2

.

The depth of the deformation zone is defined according to the technical standards
CSN EN 1997-1 (731000) and Eurocode 7: Design of Geotechnical Structures –
Part 1: General Rules, obligatory in the Czech Republic. These methods determine
the depth below the foundation where the substantial increase in vertical stress oc-
curs. The first method is the primary stress limitation method, which is expressed
by the formula σz = pσor where σor represents the original geostatic stress and p is its
considered percentage. The second method refers to the structural strength theory
with the (formally similar) result σz = mσor, m is the structural strength coefficient.
The stress distributions and the deformation depths for both methods are illustrated
by Fig. 2.

Figure 2: Evaluation of the deformation depth.

3.2. Effective subsoil approach

The approach working with dimension reduction comes from Pasternak’s model,
allows us to develop a relatively accurate model of the structure-subsoil interaction
using only the foundation plane and its boundaries. However, an iterative evalua-
tion of the deformation depth (zone) is necessary. All needed relations between the
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parameters of the surface and the spacial model for individual layers are compatible
with [19]. We receive (as introduced in Subsection 2.2)

C1 =

∫ h

0

Ez

(
∂f(z)

∂z

)2

dz, C2x =

∫ h

0

Gxzf
2(z) dz, C2y =

∫ h

0

Gyzf
2(z) dz

for certain function f(z); Ez is the deformation modulus, Gxz and Gyz are the shear
moduli in the respective axes. In a non-isotropic environment, the parameters C2x

and C2y can be different; in this presentation, we shall assume a homogeneous and
isotropic environment for simplicity, which allows us to work with one constant
value C2, similarly to the case of C1.

On the boundary line, the spring constants kw and kϕ for the displacement w and

the rotation ϕ can be derived in the form kw =
√
C1C2, kϕ = 1

2
C2

√
C2/C1. For corner

nodes or changes in the curvature of the line (e. g. on a polygonal boundary) a nodal
spring constant K = 1

2
C2αK(α) must be added where α denotes the angle measured

between normals of adjacent curves and K(α) is a certain additional function taking
further geometric properties into account. In particular, for α = π/2 the spring
constant K ≈ 1

2
C2 can be considered; for the justification see [18], p. 60. For multiple

subsoil layers, it is possible to calculate C1 and C2 from n parameters C1i with
i ∈ {1, . . . , n} in the form

C1i =
Ei (1− νi)

hi (1 + νi) (1− 2νi)
, C1 = 1/

n∑
i=1

(1/C1i) ,

C2 =
1

6
C2

1

n∑
i=1

 Eihi
1 + νi

( n∑
j=i

1

C1j

)2

+

(
n∑

j=i

1

C1j

)(
n∑

j=i+1

1

C1j

)
+

(
n∑

j=i+1

1

C1j

)2
.

3.3. Stiffness matrix reduction

As discussed in Subsection 2.3, the finite element (or similar) techniques are
needed for the full 3-dimensional modelling, with the result of the solution of large
systems of linear algebraic equations (frequently iterative, handling various nonlin-
earities, as mentioned at the beginning of the 2nd section), with sparse or banded
stiffness matrices as system ones. From the physical point of view, in certain cases
where the effects and behaviour of the soil mass have been precisely calculated for
the critical loading conditions, these stiffness values can be used for subsequent states
that are less significant for the behaviour of the soil mass. This complexity can be re-
duced by using Schur’s complements by [28] and [7]; for their effective applications
in numerical analysis see [5]. Schur’s complement technique involves partitioning
the large square stiffness matrix into particular blocks. Namely the stiffness matrix

K =

[
A B
C D

]
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contains 4 matrices A,B,C,D: A corresponds to internal degrees of freedom (DOFs),
D to boundary DOFs, B, C are cross-reference terms connecting internal and bound-
ary DOFs. The reduction of a matrix K can be then introduced (if D is invertible)
as K/D = A−BD−1C, K/A = C − AD−1B which implies

K−1 =

[
(K/D)−1 −(K/D)−1BD−1

−D−1C(K/D)−1 D−1 +D−1C(K/D)−1BD−1

]
.

Some well-known properties of Schur’s complements help to simplify our practical
calculations, namely rank(K) = rank(D) + rank(K/D) (rank additivity formula),
A/B = (A/C)/(B/C) (quotient identity), etc. Even in the case that A or D is
singular, the generalized inverse (pseudoinverse) instead of the standard one on K/A
and K/D yields generalized Schur’s complement.

4. Illustrative example

A simple example was prepared to verify the implemented formulas for the pa-
rameters C1, C2. The problem involves a plate of size 10×10×0.3 m, subjected to the
uniform perpendicular load 40 kPa. The material characteristics are E = 25 MPa,
ν = 0.28, γ = 17 kPa, the total height is h = 8 m.

Three variants of computational modelling cover: i) one single layer with h = 8 m,
ii) three layers with h1 = 5 m, h2 = 2 m, h3 = 1 m, iii) stress-based calcula-
tions (cf. Subsection 3.2). The parameters C1 and C2 based on the effective sub-
soil model were identical in variants i) and ii), with C1 = 2.604167 MPa/m and
C2 = 3.995028 MN/m. For the approach iii) using the deformation zone, all re-
sults were computed for each finite element at the centroid and the stress distribu-
tion below this point was obtained. It was found that the formulae for calculating
the stress σz are not quite suitable because they approach infinity near the surface
(ground level). Therefore it is better to use modified formulas for distributed loads
where this effect is eliminated. Implementing such additional formulas shortly is fea-
sible; it requires adjusting the calculation of σz to obtain a more accurate distribution
only, as shown at Fig. 3 (with non-constant values of C1) and Fig. 4.

For the variant of reducing the stiffness matrix using Schur’s complements, the re-
sults are still too large to be displayed for this example. The original stiffness matrix
had 7 497 nodes with 6 degrees of freedom with a total number of columns of 44 982,
and the total number of non-zero elements was 3 304 413, indicating that a signif-
icantly large and sparse system is being solved. For the reduced system, from the
original 7 497 nodes to a surface with 441 nodes, the number of columns decreased
to 2 646, and the total number of non-zero elements was 1 750 329. We can see that
the total size of the matrix decreased 17 times, but the number of non-zero ele-
ments decreased approximately 1.9 times. This is therefore advantageous for us, but
it is necessary to continue the development and implementation, as well as the use
of this reduction in subsequent analyses.
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Figure 3: Distribution of the parameter C1

for variant iii).

Figure 4: Stress distribution under the
finite element.

5. Conclusions

This paper aims to demonstrate the possibility of modelling of the soil-rock mass
and its reduction. For surface models, the implementation of an effective subsoil
model was presented, including the calculation of parameters C1 and C2 for multiple
layers of subsoil. The stress calculation σz in the subsoil and the determination of
the deformation depth were also included. This solution is already fully implemented
and can be used in RFEM software in collaboration with FEM consulting.

For advanced modelling using 3D objects, a reduction method via stiffness ma-
trix condensation was proposed. Schur’s complement technique was applied to re-
duce the stiffness matrix, resulting in a smaller system of equations. This solution
is not yet fully implemented in the program and cannot be used routinely due to
the fact that it is not a fully general solution and can only be applied with the cor-
rect setup of the calculated analyses on the computational core side. Therefore,
the software user cannot control this part, this can be seen as a major challenge
for us in generalizing this approach and releasing it in the relevant software as soon
as possible. This reduction is especially significant for subsequent calculations where
it is no longer necessary to analyze the soil-rock mass in detail, but rather the su-
perstructure, for example in dynamic problems.

Based on the above findings, our plans focus on further development and im-
provement of methods for modelling the soil-rock massif and its reduction. Our
priority is to complete the implementation into the RFEM software and enable the
creation of more test cases more easily. Above all, to determine the appropriateness
of using individual variants and identify their limitations. This will require a large
number of test and benchmark examples to validate and compare these approaches.
In addition, the reduction of the stiffness matrix using Schur’s complement can be
used in other analyses, not only within the soil-rock massif, which increases the im-
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portance of this implementation. So our drive remains unchanged to create the most
sophisticated tools possible to support structural engineers in solving increasingly
complex problems, both in terms of computational speed and accuracy.
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[35] Vesić, A. S.: Expansion of cavities in infinite soil mass. J. Soil Mech. Found.
Div. 98 (1972), 265–290.

[36] Westergaard, H. M.: Bearing pressures and cracks: bearing pressures through a
slightly waved surface or through a nearly flat part of a cylinder, and related
problems of cracks. J. Appl. Mech. 6 (1939), A49–A53.

[37] Winkler, E.: Die Lehre von der Elasticitaet und Festigkeit. H. Dominicus, Pra-
gue, 1867. (In German.)

83



84



Programs and Algorithms of Numerical Mathematics 22
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Abstract: In this short note we provide an optimal analysis of finite el-
ement convergence on meshes containing a so-called band of caps. These
structures consist of a zig-zag arrangement of ‘degenerating’ triangles which
violate the maximum angle condition. A necessary condition on the geome-
try of such a structure for various H1-convergence rates was previously given
by Kučera. Here we prove that the condition is also sufficient, providing an
optimal analysis of this special case of meshes. In the special case of optimal
O(h)-convergence of finite elements, the analysis states that such optimal con-
vergence is possible if and only if the height of the band of caps is at least Ch2

for some constant C. Numerical experiments confirm this result.

Keywords: Finite element method, error estimates, maximum angle condi-
tion

MSC: 65N30, 65N15, 65N50

1. Introduction

The finite element method is the golden standard of current methods for partial
differential equations. Much work has been devoted over the past 60 years to develop
various error estimates for this method applied a wide range of problems. It may
therefore seem surprising that the simplest basic question remains unanswered to this
day: What is a necessary and sufficient condition on triangular meshes for piecewise
linear finite elements to converge? Even in the simplest of all settings – Poisson’s
problem and estimates in the corresponding H1(Ω) energy norm, this is still an open
problem.

The basic textbook result is that if the meshes satisfy the minimum angle condi-
tion, then finite elements will exhibit optimal O(h) convergence in the energy norm.
This condition requires that all angles of all elements in the mesh(es) are uniformly
bounded away from zero. A slightly more advanced result is that O(h) convergence
occurs under the more general maximum angle condition, which requires that the
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maximal angles of all triangles are uniformly bounded away from π. This sufficient
condition was generally assumed to also be necessary – the confusion was caused
by the misleading title “The maximum angle condition is essential” from the orig-
inal paper [1]. The title refers to a counterexample provided in the paper, where
finite elements do not converge on a special mesh consisting only of ‘degenerating’
elements. As it turns out, the maximum angle condition is not necessary for O(h)
convergence of the finite element method, cf. [3]. Since then, another counterex-
ample was analyzed in the paper [6], where a single structure, a so-called band of
caps, contained in the mesh destroys finite element convergence. The analysis leads
to conditions on the proportions and geometry of the band of caps that is necessary
for O(h) convergence, and more generally O(hα) convergence for some α ∈ [0, 1].

The purpose of this short note is to show that the condition on the band of
caps derived in [6] is optimal, i.e. both necessary and sufficient for O(hα) conver-
gence. Although the question of a general necessary and sufficient condition for the
convergence of the finite element method still remains open, at least there is a sec-
ond special case that can be analyzed optimally. The main result of the analysis is
that O(h) convergence of finite elements occurs if and only if the height of the band
of caps is at least Ch2 for some constant C. This is important, as a band of caps is
a natural triangulation of a (straight) interface. In 2D, an interface is a 1D object,
and it is natural to approximate it using very flat triangles in a mesh. The theorem
states that the triangles approximating the interface can be flatter and flatter as
we refine the mesh, as long as their height is at least Ch2. We present numerical
experiments that confirm this result, and also indicate that a height of at least Ch2

is also necessary and sufficient for O(h2)-convergence in the L2-norm, a result that
we are unable to prove rigorously.

2. Finite element method

As a model problem, we will be focused on Poisson’s problem in R2. Let Ω ⊂ R2

be a polygonal domain with Lipschitz boundary ∂Ω. We solve the problem

−∆u = f on Ω, u|∂Ω = 0 (1)

with the weak form: Find u ∈ H1
0 (Ω) such that∫

Ω

∇u· ∇v dx = (f, v), ∀v ∈ H1
0 (Ω), (2)

whereH1
0 (Ω) is the standard Sobolev space of functions with square integrable deriva-

tives and a zero trace on ∂Ω, while (f, v) =
∫

Ω
fv dx is the L2 scalar product.

In the finite element method, we consider a conforming triangulation Th of Ω,
i.e. a partition into triangles (elements) with mutually disjoint interiors such that
the intersection of two neighboring elements is either a single vertex or a whole edge.
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Here h denotes the length of the longest edge in the triangulation. This partition
defines the continuous piecewise linear finite element space

Vh = {vh ∈ C(Ω); vh|K ∈ P 1(K) for all K ∈ Th}, (3)

where P 1(K) is the space of linear functions on the triangular element K ∈ Th.
The finite element method is then defined as follows: Find uh ∈ Vh such that∫

Ω

∇uh· ∇vh dx = (f, vh), ∀vh ∈ Vh. (4)

It is desirable to obtain estimates for the error u−uh. To this end, Céa’s lemma,
cf. [2], gives us an estimate in the H1(Ω)-seminorm:

|u− uh|H1(Ω) = inf
vh∈Vh

|u− vh|H1(Ω), (5)

where |u|H1(Ω) =
√∫

Ω
|∇u|2dx. We note that for other problems, one can expect an

inequality in (5) and a problem-dependent constant in the upper bound.
Standard finite element estimates are typically derived by taking the piecewise

linear Lagrange interpolation Πhu as vh in (5). This is defined element-wise: on each
element K ∈ Th the function Πhu|K = ΠKu ∈ P 1(K) coincides with u at the vertices
of K. Such a locally defined function naturally gives a globally continuous piecewise
linear function in Vh.

For triangles, there is an optimal estimate for the interpolation error u−ΠKu in
seminorms in the general Sobolev space W 1,p(Ω). We will need this estimate only in
the special case of p =∞. Consider an arbitrary triangle K ⊂ R2. Denote the length
of its longest edge as hK and its height perpendicular to this edge as hK . Finally,
define RK as the circumradius of K, i.e. the radius of the circumscribed circle to K.
We have the following optimal estimate, cf. [4], [5].

Lemma 1 (Circumradius estimate). Let K ⊂ R2 be an arbitrary triangle. Let
u ∈ W 2,p(K), 1 ≤ p ≤ ∞, and let ΠKu be the linear Lagrange interpolation of u
on K. Then there exists a constant Cc independent of u and K such that

|u− ΠKu|W 1,p(K) ≤ CcRK |u|W 2,p(K) ≤ Cc
h2
K

hK
|u|W 2,p(K). (6)

One is especially interested in optimal convergence results of the order O(h) in
the H1(Ω)-seminorm, via (5). A sufficient (but not necessary!) condition for this to

happen is when RK ≤ C̃h for all K ∈ Th with some constant C̃ independent of h.
Geometrically, this is equivalent to satisfying the maximum angle condition. This
condition requires that all maximal angles αK of all triangles K ∈ Th are smaller
than some α0 < π. Then we have the following element-wise estimate, which can
then be applied in (5).
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Lemma 2 (Maximum-angle condition). Let K ⊂ R2 be a triangle satisfying the max-
imum angle condition: αK ≤ α0 < π for some fixed α0. Let u ∈ H2(K) and let ΠKu
be the linear Lagrange interpolation of u on K. Then there exists a constant CI
depending only on α0 such that

|u− ΠKu|H1(K) ≤ CIh|u|H2(K). (7)

By taking the piecewise linear element-wise Lagrange interpolation in Céa’s lem-
ma (5) one immediately obtains the following error estimate from Lemma (2).

Theorem 3 (Basic error estimate). Let u ∈ H2(Ω) be the solution of (2) and uh ∈ Vh
the finite element solution of (4). If αK ≤ α0 < π for all K ∈ Th, we have

|u− uh|H1(Ω) ≤ CIh|u|H2(Ω), (8)

where CI is the constant from Lemma 2.

The maximum angle condition has a long and complicated history, being discov-
ered independently by several groups, e.g. [1]. In [3] it was proven that this condition
is not necessary for O(h) convergence. In fact Th can contain many ‘bad’ triangles
violating the maximum angle condition while still exhibiting optimal O(h) conver-
gence. In other words, the finite element method can converge optimally even when
the Lagrange interpolation error goes to infinity. This is especially important when
we have a sequence of meshes obtained e.g. by refinement and let h → 0. In this
situation one usually considers a set of triangulations Th, h ∈ (0, h0) for some h0 > 0.

Apart from the paper [3], paper [6] has dealt with sufficient as well as neces-
sary conditions for O(h) convergence, or more generally, for O(hα) estimates with
0 ≤ α ≤ 1. Specifically, the so-called band of caps has been identified as the basic
(but not only) villain preventing optimal convergence of the finite element method.
The band of caps consists of triangles in a zigzag pattern, cf. Figure 1, where all of
the elements violate the maximum angle condition with the given α0. Specifically, we
shall consider such a band of length L and height h consisting of identical isosceles
triangles with diameters h, cf. Figure 1. We assume that every Th we consider con-
tains one such band, while all other elements satisfy the maximum angle condition
with a fixed maximal angle α0. It is important to note that the length L of the band
can also depend on h (e.g. L ∼

√
h, etc.), although the most important case in our

situation is that L ∼ 1 is independent of h.

h̄

h L

Figure 1: Band of caps of length L and height h.

The band of caps is important as a model for an approximated interface within
the mesh Th. This is because it is an essentially 1D object (as an interface in 2D
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would be) with some nonzero thickness h. It is then desirable to have the thickness
of the approximate interface as small as possible without affecting the convergence
rate of the finite element method. Due to the regular structure, the finite element
error can be analyzed on meshes containing these bands of caps. Specifically, what
are conditions on the geometry parameters L and h in order to preserve O(h) conver-
gence, or more generally O(hα) convergence for some α ∈ [0, 1]. In [6], the following
result is proved as a special case of the main theorem of the paper dealing with
a band of general elements (cf. estimate (64) in the cited paper).

Theorem 4. Let u ∈ W 2,∞(Ω) and let α ∈ [0, 1]. Let Th, h ∈ (0, h0] each contain
a band of caps B of length L and height h. Let L ≥ CLh

2α/5, where CL is a sufficiently
large constant. Then a necessary condition for the estimate

|u− uh|H1(Ω) ≤ Ĉhα (9)

to hold with some Ĉ independent of h, is

h ≥ C̃h4−2αL (10)

for some C̃ > 0.

In the special case of a band of caps of length L ∼ 1, the condition says
that for O(h) convergence of the finite element method, we must necessarily have

h ≥ C̃h2 for some C̃ > 0. And for (even arbitrarily slow) convergence of the finite

element method, i.e. the limiting case of α = 0, we must necessarily have h ≥ C̃h4

for some C̃ > 0. In the next section, we will show that these conditions are both
necessary and sufficient.

3. Optimal error estimate for a band of caps

Here we will show that the condition (10) on h from Theorem 4 is not only
necessary for O(hα)-convergence, but also sufficient. It turns out that unlike the
lengthy technical proof of Theorem 4, this is a simple application of the circumradius
estimate. In the following, C will be a generic constant independent of u and h.

Theorem 5. Let u ∈ W 2,∞(Ω) and let α ∈ [0, 1]. Let Th contain a band of caps B
of length L and height h, while all other elements in Th satisfy the maximum angle
condition with some α0. Let there exist C̃ > 0 such that

h ≥ C̃h4−2αL. (11)

Then there exists a constant C independent of u and h, such that

|u− uh|H1(Ω) ≤ Chα|u|W 2,∞(Ω). (12)
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Proof. From Céa’s lemma we have

|u− uh|2H1(Ω) ≤ |u− Πhu|2H1(Ω) = |u− Πhu|2H1(Ω\B) + |u− Πhu|2H1(B), (13)

due to additivity of integrals. The first term in (13) uses standard estimates (all
elements of Ω \ B satisfy the maximum angle condition):

|u− Πhu|2H1(Ω\B) ≤ Ch2|u|2H2(Ω) ≤ Ch2|Ω||u|2W 2,∞(Ω). (14)

The second term in (13) is estimated using the circumradius estimate (6):

|u− Πhu|2H1(B) =

∫
B
|∇u−∇Πhu|2 dx ≤ |u− Πhu|2W 1,∞(B)|B|

≤ C

(
h2

h

)2

|u|2W 2,∞(B)|B| ≤ C
h4

h
L|u|2W 2,∞(Ω),

(15)

since |B| ≤ hL. Using assumption (11) on h in the right-hand side of (15), we get

|u− Πhu|2H1(B) ≤ C
h4

C̃h4−2αL
L|u|2W 2,∞(Ω) = Ch2α|u|2W 2,∞(Ω). (16)

Combining estimates (13), (14), and (16), and taking the square root gives us the
desired estimate.

If we are specifically interested in the most interesting case of L ∼ 1 independent
of h, and α = 1 (i.e. O(h)-convergence), we get the following theorem. It states that
the height h of the band of caps can in fact go to zero as fast as h2 without influ-
encing the O(h) convergence rate of the finite element method. For the simulation
of interfaces this is good news, since it allows for a finer resolution of the interface
(which technically has zero height).

Theorem 6. Let u ∈ W 2,∞(Ω). Let Th contain a band of caps B of length L ∼ 1 and
height h, while all other elements in Th satisfy the maximum angle condition with
some α0. Let there exist C̃ > 0 such that

h ≥ C̃h2. (17)

Then there exists a constant C independent of h and u, such that

|u− uh|H1(Ω) ≤ Ch|u|W 2,∞(Ω). (18)

4. Numerical experiments

In this section we use numerical experiments to confirm that condition (17) is
necessary and sufficient for O(h)-convergence. Namely we consider problem (2) on
Ω = [−1, 1]2 with the manufactured solution u(x, y) = cos(πx) sin(πy). We consider
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Figure 2: Test mesh containing a vertical band of caps.

meshes with a single vertical band of caps in the center of the domain which spans
the whole height of Ω, cf. Figure 2. The mesh outside of the band of caps is very
regular, consisting of right-angled triangles. We construct a series of 11 such meshes
with decreasing h. We also construct reference meshes which do not contain a band
of caps but only identical right-angled triangles throughout the entire mesh.

To test the sharpness of condition (17), we consider meshes containing bands of
caps with height h = hk for k = 2, 2.5, and 3, where k = 2 corresponds to the case
of h = h2 from Theorem 6. According to the theorem, higher exponents than k = 2
should result in slower than O(h)-convergence of the finite element method.

The H1-errors are plotted in Figure 3. We observe that the convergence curves
on the ‘nice’ reference meshes and on the meshes with a band of caps with height
h = h2 are essentially indistinguishable. On the other hand, the curve corresponding
to k = 3, i.e. h = h3, clearly exhibits a slower convergence rate as h→ 0. For k = 2.5
the curve also exhibits a decrease in convergence rate, although not as dramatic as
k = 3. Testing exponents even closer to k = 2, e.g. k = 2.1 would require extremely
fine meshes to observe the slow-down of convergence. Nevertheless, we view Figure 3
as a confirmation of Theorem 6.

Finally, we have also tested convergence in the L2(Ω)-norm. The results are in
Figure 4. In the L2(Ω)-norm, we expect the error to be O(h2) under ideal circum-
stances (e.g. provided the maximum angle condition). This convergence rate can
be seen in the convergence curve for the reference meshes. Although we are unable
to prove this, we get this optimal convergence rate also in the presence of bands of
caps of height h = h2 (i.e. the case satisfying Theorem 6). Again the two curves
are essentially identical. And as for the H1-seminorm, the convergence rate in the
L2-norm decreases for the higher exponents k = 3 and k = 2.5.

We note that we are currently unable to prove the optimal convergence rates
in L2 in the presence of bands of caps, since the proof of Theorems 6 and 5 is based
essentially on L∞(Ω) estimates of the gradients and second derivatives. Proving
these optimal convergence rates would require the application of the Aubin-Nitsche
duality argument in L∞-based norms, which leads to technical issues that we were
so-far unable to circumvent.
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Figure 3: Convergence of the finite element method in the H1-seminorm. Conver-
gence on a regular reference mesh and convergence on meshes containing bands of
caps with height h = hk with k = 2, 2.5, 3.

Figure 4: Convergence of the finite element method in the L2-norm. Convergence
on a regular reference mesh and convergence on meshes containing bands of caps
with height h = hk with k = 2, 2.5, 3.
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Abstract: We present an algorithm of finding the Hamiltonian cycle
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1. Introduction

The problem of finding a Hamiltonian cycle in a general undirected graph is
one of the basic optimization tasks and has a wide application not only in lo-
gistics, but also in some modern fields, such as computer graphics or microchip
construction [3]. However, it belongs to the so-called NP-complete problems [2]
and finding an algorithm that could solve NP-complete problems in polynomial
time is one of the seven Millennium Prize Problems [1]. In graph theory, there
exists a number of sufficient conditions guaranteeing that a given graph is Hamilto-
nian (i.e. contains a Hamiltonian cycle). These conditions are most often based on
some properties of the graph, such as the sum of degrees of non-adjacent vertices
or the minimum degree of the graph [4]. In this contribution we apply a different
(numerical) approach: The characteristic polynomial of the Laplacian matrix (one
may also choose the adjacency matrix) of an undirected graph formed by a sin-
gle Hamiltonian cycle is related to some Chebyshev polynomial of the first kind.
Whereas linearly constrained minimization problem have already been employed
for finding a Hamiltonian cycle (e.g. [5]) we use the properties of Chebyshev poly-
nomials and present the algorithm consisting in finding a Hamiltonian cycle by
minimization of an appropriately chosen nonlinear functional.
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2. Graph, its representation and basic properties

By graph G we consider an ordered pair G = (V,E), where

V = V (G) = {v1, v2, . . . , vn}
is a set of vertices of graph G and

E = E(G) = {e1, e2, . . . , em} ⊆
(
V

2

)
, ej = {vk, vl}, k 6= l,

is a set of edges of the graph G.

We denote by B ∈ {0, 1}n×m the incidence matrix of G satisfying Bij = 1 if vi ∈ ej
and Bij = 0 if vi 6∈ ej. Arbitrary set of edges can be represented by the vector
~w ∈ {0, 1}m×1, which is a characteristic vector of the set W ⊆ E satisfying wi = 1
if ei ∈ X and wi = 0 otherwise.

Using this notation we may define the vertex-disjoint cycle cover ~w of the
graph G being any set of edges satisfying

~w ∈ {0, 1}m×1, (1)

1Tm ~w = n, (2)

B~w = 2 · 1n, (3)

where 1n = (1, 1, . . . , 1)T ∈ Rn. While the second condition ensures the cycle cover
contains n edges, the third one guarantees that each vertex coincides with exactly
2 edges.

Further, let W ⊆ E be any set of edges and let ~w ∈ {0, 1}m×1 be its represen-
tation. If we denote by diag(~w) ∈ {0, 1}m×m a diagonal matrix with the vector ~w
on its main diagonal, then

L(~w) = 4I −B diag(~w)BT (4)

is the Laplacian matrix of the graph induced by the set W . Consequently, if
diag(~w) = I, then L = 4I −BBT is the Laplacian matrix of the graph G.

The least-squares solution of the system B~w = 2 · 1n is defined using the
Moore–Penrose pseudo-inverse of the matrix B (see e.g. [8]) as follows

~wLS = B†(2 · 1n) = 2 ·B†1n. (5)

The following lemma provides a characterization of the distribution of all
vertex-disjoint cycle covers: they all lie on the same sphere with the center at ~wLS
and radius equal to

√
n− ‖~wLS‖2.

Lemma 1. Let ~w ∈ {0, 1}m be a vertex-disjoint cycle cover, then

‖~w − ~wLS‖2 = n− ‖~wLS‖2. (6)

Proof. One can find the proof in [6].
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3. Definition of the solution space

In this chapter we describe how we chose the solution space in which the min-
imum of the functional will be searched. At first let us consider any undirected
graph containing two different Hamiltonian cycles (cf. Figure 1).

Figure 1: Graph with two Hamiltonian cycles

Consequently, the Laplacian matrices of the subgraphs induced by these Hamil-
tonian cycles have the following form

LA =


2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2

 , LB =


2 −1 0 0 0 −1
−1 2 0 0 −1 0

0 0 2 −1 0 −1
0 0 −1 2 −1 0
0 −1 0 −1 2 0
−1 0 −1 0 0 2

 .

We observe that we can obtain one matrix from the other one simply by simul-
taneous permutation of columns and rows, i.e. LA = PLBP

T for some permutation
matrix P . Hence, both matrices share a common characteristic polynomial. In
this case it has a form

pA(x) = pB(x) = x6 − 12x5 + 54x4 − 112x3 + 105x2 − 36x. (7)

If the Laplacian matrix of the n-cycle is tridiagonal with another two −1 in
the corners, we call it in the standard form (cf. matrix LA).

Lemma 2. Let Ln be the Laplacian matrix of the n-cycle in the standard form
and j = n/2 for n even or j = (n + 1)/2 for n odd. Then the eigenvectors and
eigenvalues of the matrix Ln have the following form:

~uk,1 =

[
cos

(
1
kπ

n

)
, cos

(
3
kπ

n

)
, . . . , cos

(
(2n− 1)

kπ

n

)]T
, k = 0, 1, . . . , j − 1,

~uk,2 =

[
sin

(
1
kπ

n

)
, sin

(
3
kπ

n

)
, . . . , sin

(
(2n− 1)

kπ

n

)]T
, k = 1, 2, . . . , n− j,
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λk = 4 sin2

(
kπ

n

)
, k = 0, 1, . . . , n− j.

In this notation vectors ~uk,1 and ~uk,2 are two linearly independent eigenvectors that
correspond to the eigenvalue λk, for all suitable k.

Proof. The proof results immediately from the identities

− cos

(
(i− 2)

kπ

n

)
+ 2 cos

(
i
kπ

n

)
− cos

(
(i+ 2)

kπ

n

)
= 4 sin2

(
kπ

n

)
· cos

(
i
kπ

n

)
, (8)

− sin

(
(i− 2)

kπ

n

)
+ 2 sin

(
i
kπ

n

)
− sin

(
(i+ 2)

kπ

n

)
= 4 sin2

(
kπ

n

)
· sin

(
i
kπ

n

)
. (9)

Remark 3. In Lemma 2 for λ0 = 0 we obtain a single eigenvector ~u0,1 = 1n.
When n is even and j = n/2 then since ~uj,1 = [0, 0, . . . , 0]T for eigenvalue λj = 4
only a single eigenvector ~uj,2 = [1,−1, 1, . . . ,−1]T is obtained as well. If we want
to consider all eigenvalues λk with their multiplicities then instead of the upper
bound k = n− j we simply take k = n− 1 and use the fact that λk = λn−k.

For given n ≥ 3 the following lemma provides an expression for the character-
istic polynomial of the Laplacian matrix of n-cycle (c.f. Table 1).

Lemma 4. Let n ∈ N, n ≥ 3 be given, then the characteristic polynomial of the
Laplacian matrix of n-cycle has a form

Sn(x) = 2 ·
(
Tn

(x
2
− 1
)
− (−1)n

)
, (10)

where Tn(x) is the Chebyshev polynomial of the first kind.

Proof. We show that λk, k = 0, 1, . . . , n−1, from Lemma 2 (with their multiplicity)
are roots of Sn. Hence, let us evaluate Sn(λk) for k = 0, 1, . . . , n− 1:

Sn(λk) = 2

(
Tn

(
λk
2
− 1

)
− (−1)n

)
= 2

(
Tn

(
2 sin2

(
kπ

n

)
− 1

)
− (−1)n

)
= 2

(
Tn

(
− cos

(
2
kπ

n

))
− (−1)n

)
= 2(−1)n

(
Tn

(
cos

(
2
kπ

n

))
− 1

)
= 2(−1)n

(
cos(2kπ)− 1

)
= 2(−1)n

(
1− 1

)
= 0, (11)

where we used the property Tn(cosα) = cos(nα) and the parity of the Chebyshev
polynomials (cf. [7]).
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We shall also evaluate S ′n(λk) for k = 0, 1, . . . , n− 1:

S ′n(λk) = 2T ′n

(
λk
2
− 1

)
= 2nUn−1

(
λk
2
− 1

)
= 2nUn−1

(
− cos

(
2
kπ

n

))
= 2n(−1)n−1Un−1

(
cos

(
2
kπ

n

))
= 2n(−1)n−1 sin(2kπ)

sin 2kπ
n

= 0, (12)

for all considered k except k = 0 and k = n/2. For λ0 = 0 and λn/2 = 4 (for n even)
we obtain S ′n(0) = 2nUn−1(−1) = 2n2(−1)n−1 and S ′n(4) = 2nUn−1(1) = 2n2.
This corresponds to Lemma 2, since the multiplicity of the root λ0 = 0 and
λn/2 = 4 (for n even) is always equal to one. Here we have also employed the
properties of the Chebyshev polynomials of the second kind: T ′n(x) = nUn−1(x)

and Un(cosα) = sin(n+1)α
sinα

(cf. [7]).

n Tn(x) Sn(x)

3 4x3 − 3x x3 − 6x2 + 9x

4 8x4 − 8x2 + 1 x4 − 8x3 + 20x2 − 16x

5 16x5 − 20x3 + 5x x5 − 10x4 + 35x3 − 50x2 + 25x

6 32x6 − 48x4 + 18x2 − 1 x6 − 12x5 + 54x4 − 112x3 + 105x2 − 36x

7 64x7 − 112x5 + 56x3 − 7x x7 − 14x6 + 77x5 − 210x4 + 294x3 − 196x2 + 49x
...

...
...

Table 1: Comparison of polynomials Tn(x) and Sn(x).

Since the equation (3) has in general infinitely many solutions (e.g. 2-factors)
we denote by H ⊂ Rm×1 the set of all its solutions. Each vector ~z ∈ H can then
be expressed in a form

~z = ~z0 +
m−n∑
j=1

βj · ~zj, (13)

where ~z0 is any solution of equation (3) and span({~zj}m−nj=1 ) is the nullspace of B.

Remark 5. We consider ~z0 = xLS being the least-square solution of the equa-
tion (3) and {~zj}m−nj=1 form the orthonormal basis.

Let ~z ∈ H be any vector, then in virtue of (4) we define the matrices:

L(~z ) = 4 · I −B · diag(~z ) ·BT . (14)
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The set of matrices L = {L(~z ), ~z ∈ H} then has the same dimension as H
and any matrix L ∈ L can be expressed in a form L = L0 +

∑m−n
i=1 βi · Li with

Li = −B · diag(~zi) ·BT and L0 = 4 · I −B · diag(~z0) ·BT .

For each L ∈ L we shall compute its characteristic polynomial

pL(x) = det(x · I − L) (15)

and obtain the set of (admissible) polynomials P = {pL(x), L ∈ L}. Consequently,
if the graph G contains the Hamiltonian cycle, then Sn(x) ∈ P . Hence, we shall
try to find a functional F : P → R so that there holds:

Sn = arg min
p∈P

F (p). (16)

Thus, the whole problem is reduced to finding the minimum of the functional F .
Moreover, since

min
p∈P

F (p) = min
L∈L

F (pL(x)) = min
L∈L

F (det(x · I − L)), (17)

it suffices to find a proper matrix L = L0+
∑m−n

i=1 βi ·Li, i.e. a proper coefficients βi,
i = 1, 2, . . . ,m− n.

4. Definition of functionals and their derivatives

4.1. Coordinate functional

One possible choice of the functional consists in expressing any polynomial
p ∈ P in the basis formed by polynomials Si, 1 ≤ i ≤ n, i.e. p =

∑n
i=1 αi · Si.

Since the minimum of the desired functional should be reached at p = Sn, i.e.
αi = 0 for i = 1, 2, . . . , n− 1, we choose

Fc(p) =
n−1∑
i=1

α2
i =

n−1∑
i=1

α2
i (p). (18)

In what follows, we would like to find out, how the coefficients αi depend on the
polynomial p. We apply the discrete orthogonality of the Chebyshev polynomials
(cf. [7]):

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j,

n if i = j = 0,

n/2 if i = j 6= 0,

(19)
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where 0 ≤ i, j < n and xk are Chebyshev’s nodes of Tn(x). Then there holds

n−1∑
k=0

p(yk)Tj(xk) =
n−1∑
k=0

(
n∑
i=1

αiSi(yk)

)
Tj(xk)

= 2
n−1∑
k=0

n∑
i=1

αi

(
Ti

(yk
2
− 1
)
− (−1)i

)
Tj(xk)

= 2
n∑
i=1

αi

n−1∑
k=0

Ti(xk)Tj(xk)− 2
n∑
i=1

αi(−1)i
n−1∑
k=0

Tj(xk)

= 2
n∑
i=1

αi

(n
2
δij

)
− 2

n∑
i=1

αi(−1)i · 0 = n · αj, (20)

where yk = 2(xk + 1). Hence αj = 1
n

∑n−1
k=0 p(yk)Tj(xk).

Since all polynomials p depend on the choice of the vector (β1, β2, . . . , βm−n),
we need to compute the derivative of F with respect to βi:

∂Fc
∂βi

=
∂

∂βi

n−1∑
j=1

α2
j = 2

n−1∑
j=1

αj ·
∂αj
∂βi

, (21)

∂αj
∂βi

=
1

n

n−1∑
k=0

Tj(xk)
∂

∂βi
p(yk), (22)

∂p(yk)

∂βi
=

∂

∂βi
det
(
ykI − L0 −

m−n∑
j=1

βj · Lj
)
. (23)

If we now denote Rk = ykI − L0 −
∑m−n

j=1 βj · Lj, we may apply Jacobi’s formula(
detA(x)

)′
= tr

(
adjA(x) · A′(x)

)
and obtain:

∂p(yk)

∂βi
= tr

(
adjRk · (−Li)

)
= − detRk · tr

(
R−1
k · Li

)
, (24)

for nonsingular matrix Rk.

4.2. Integral functional

Since the polynomials Sn are defined using Chebyshev’s polynomials, they solve
the following (Chebyshev’s) differential equation (cf. [7]):

x(4− x)y′′ + (2− x)y′ + n2y = −2n2(−1)n, (25)

y(0) = 0, y(4) = 2(1− (−1)n). (26)
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If we transfer the boundary condition and transform the equation into the
divergent form we obtain the following quadratic functional:

Fin(p) =

∫ 4

0

√
x(4− x) (p′)2 − n2√

x(4− x)
p2 + 2 fn(x) p dx, (27)

where fn(x) = (2−x)(n2−1)√
x(4−x)

for n odd and fn(x) = −2n2√
x(4−x)

for n even.

Remark 6. To evaluate integrals containing
√

1− x2 on the interval (−1, 1) one
can apply the Chebyshev-Gauss quadrature rules:∫ 1

−1

f(x)√
1− x2

dx ≈
n∑
k=1

wk f(xk),

∫ 1

−1

g(x)
√

1− x2 dx ≈
n∑
k=1

ŵk g(x̂k),

where xk are roots of Tn(x) and wk = π
n

, while x̂k are roots of T ′n+1(x) and ŵk =
π
n+1

sin2
(
π k
n+1

)
. These formulas are exact for polynomials up to order 2n − 1 and

when we transform them on the interval [0, 4], we obtain the following expressions:∫ 4

0

p2(y)√
y(4− y)

dy = 2π

 n∑
i=1

α2
i + 2

(
n∑
i=1

αi(−1)i

)2
 , (28)

∫ 4

0

√
y(4− y)(p′(y))2 dy = 2π

n∑
i=1

i2α2
i , (29)

∫ 4

0

fn(y)p(y) dy = 4πn2

n∑
i=1

(−1)iαi, for n even, (30)∫ 4

0

fn(y)p(y) dy = −2π(n2 − 1)α1, for n odd, (31)

providing p(y) =
∑n

i=1 αiSi(y). Consequently, for the functional Fin there holds:

Fin(p)
n even

= −2π

[
n∑
i=1

(n2 − i2)α2
i − 2n2

(
1−

n∑
i=1

αi(−1)i

)
n∑
i=1

αi(−1)i

]
, (32)

Fin(p)
n odd

= −2π

 n∑
i=1

(n2 − i2)α2
i + 2n2

(
n∑
i=1

αi(−1)i

)2

+ (n2 − 1)α1

 . (33)

Unfortunately, these functionals failed to be positive and, hence, they do not at-
tain their minimum in p = Sn. Therefore, together with the functional Fc (cf. (18))
we consider only functional (28) (functional Fin,1) and (29) (functional Fin,2) with
the sums ending at i = n− 1.
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5. Numerical experiments

For the minimization we employ the gradient descent method with the back-
tracking line search driven by the Armijo condition (cf. Figure 2). We consider
random graphs with 16 vertices and 18–32 edges containing Hamiltonian cycle.
For each kind of graph and for each functional we generate 100 random graphs.
The results in Table 2 show numbers of graphs for which the algorithm success-
fully ended and found the Hamiltonian cycle. If the algorithm failed, it was due
to finding a local extremum or exceeding the maximum number of iterations.

functional 16/18 16/20 16/22 16/24 16/26 16/28 16/30 16/32

Fc 93 80 82 70 58 55 54 50

Fin,1 77 61 63 54 48 35 37 31

Fin,2 96 88 80 66 63 71 63 62

Table 2: Numerical results for all considered functionals.

Figure 2: An example of minimization algorithm for the functional Fc and a graph
with 7 vertices and 9 edges. The minimum lies on the circle with the center in xLS.
The other point on the circle corresponds to the 2-factor of the graph considered.

6. Conclusion

Numerical experiments show that all three functionals contain unwanted local
extrema which cause problems during minimization process. It also results from
the Table 2 that the more edges a graph has, the more complicated it is to reach
the global minimum. Of these three algorithms, algorithm Fin,1 provided the worst

results, probably due to the presence of the oscillation term
(∑n−1

i=1 αi(−1)i
)2

.
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The construction of another (hopefully convex) functional, as well as improve-
ments to the minimization process and different choice of the null space basis of
the incidence matrix B will be the subject of the future research.
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1. Introduction

In this contribution, we are concerned with a nonlinear programming prob-
lem (NP): Find the minimum of a function F (x) on the set given by constraints
c(x) ≤ 0, where F : Rn → R, c : Rn → Rm are twice continuously differentiable
mappings (c(x) ≤ 0 is considered by elements).

Necessary conditions (the KKT conditions) for the solution of problem (NP) (if
the gradients of active constraints are linearly independent) have the following form

g(x, u) = 0, c(x) ≤ 0, u ≥ 0, UC(x)e = 0, (1)

where

g(x, u) = ∇F (x) +
m∑
k=1

uk∇ck(x) = ∇F (x) + A(x)u

and A(x) = [∇ck(x) : 1 ≤ k ≤ m]. Here u ∈ Rm are the vectors of Lagrange
multipliers, U = diag(uk : 1 ≤ k ≤ m), C(x) = diag(ck(x) : 1 ≤ k ≤ m) and e is the
vector with unit elements.

Nonlinear programming problems are frequently solved by three types of methods:
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• Sequential quadratic programming (SQP) methods: In this case, the quadratic
programming subproblem

Minimize Q(d) =
1

2
dTBd+ gTd, where ATd+ c ≤ 0,

is solved in every iteration.

• Interior points (IP) methods: In this case, we solve the sequence of equality
constrained problems

Minimize F (x)− µeT log(S)e, where c(x) + s = 0,

where S = diag(sk : 1 ≤ k ≤ m) > 0 and µ → 0. The constraints s ≥ 0 are
satisfied algorithmically using the bounds for stepsizes.

• Nonsmooth equation (NE) methods: In this case, we solve the equality con-
strained problem

Minimize F (x), where h(x, u) = 0,

in every iteration. The set of equations h(x, u) = 0 is usually nonsmooth.

SQP methods require an efficient solution of the quadratic programming subproblem.
In the large scale case it usually consumes a large computational time. IP and NE
methods, which transform inequality constrained problems to equality constrained
ones, are very efficient.

2. Nonsmooth equation methods

Inequalities in (1), so called complementarity conditions, can be transformed to
equations using the Fischer-Burmeister function [2]

ψ(a, b) =
√
a2 + b2 − (a+ b),

which is zero if and only if a ≥ 0, b ≥ 0 and ab = 0. The Fischer-Burmeister
function ψ(a, b) is continuously differentiable if |a| + |b| 6= 0 and semismooth if
|a| + |b| = 0. Moreover, function ψ2(a, b) is continuously differentiable everywhere.
The gradient and the Clarke subdifferential of the Fischer-Burmeister function are
given by the formulas

∇ψ(a, b) =

[
a√

a2+b2
− 1

b√
a2+b2

− 1

]
, |a|+ |b| 6= 0, (2)

∂ψ(0, 0) = conv
⋃

φ∈[0,2π]

[
cosφ− 1
sinφ− 1

]
. (3)
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Formula (3) implies that [−1,−1]T ∈ ∂ψ(0, 0). Therefore, setting r(a, b) =
√
a2 + b2

for |a|+ |b| 6= 0 and r(a, b) = 1 for |a|+ |b| = 0 we obtain[
a

r(a,b)
− 1

b
r(a,b)

− 1

]
∈ ∂ψ(a, b). (4)

Complementarity conditions in (1) are satisfied if and only if ψ(uk,−ck(x)) = 0,
1 ≤ k ≤ m, so (1) can be replaced by the system of nonlinear equations

f(z) = f(x, u) =

[
g(x, u)
h(x, u)

]
= 0, (5)

where h(x, u) = [ψ(uk,−ck(x)) : 1 ≤ k ≤ m]T . The mapping f(z) is semismooth at
every point z ∈ Rn+m. Therefore

f ′(z, d) = Jd+ o(‖d‖) if ‖d‖ → 0 and J ∈ ∂f(z + d)

and
f(z + d)− f(z) = f ′(z, d) + o(‖d‖) = Jd+ o(‖d‖). (6)

Linearizing system (5) by using (6), we obtain a step of the Newton method

x+ = x+ dx, u+ = u+ du,

where [
B A

(R + C)R−1AT −(R− U)R−1

] [
dx
du

]
= −

[
g(x, u)
h(x, u)

]
, (7)

and where

B ≈ G(x, u) = ∇2F (x) +
m∑
k=1

uk∇2ck(x),

A = A(x), C = C(x), U = U(x), R = diag(rk : 1 ≤ k ≤ m), rk =
√
ck(x)2 + u2

k.
The algorithm of a nonsmooth equation method can be roughly described in

the following way. For given vectors x ∈ Rn, u ∈ Rm we determine direction vec-
tors dx, du by solving a linear system equivalent to (7). Furthermore, we choose
new vectors xi+1, ui+1 by using a suitable merit function (Section 4) or by using
a combined filter (Section 5).

3. Determination of a direction vector

Linear system (7) is not suitable for iterative solvers in general since it is non-
symmetric and can have unsuitable diagonal elements. A symmetric linear system
can be obtained by multiplying the second row of (7) by the matrix (R + C)−1R.
Then [

B A
AT −M

] [
dx
du

]
= −

[
g(x, u)

(R + C)−1R h(x, u)

]
,
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where M = (R + C)−1(R − U) is a diagonal positive definite matrix. Diagonal
elements of M can be very large in general. Therefore, we eliminate direction vectors
corresponding to inactive constraints.

Definition 1. A constraint with index k is active if

−∂ψk
∂uk
≤ ε̂

∂ψk
∂ck

⇐⇒ rk − uk ≤ ε̂(rk + ck),

where ψk = ψ(uk,−ck) and ε̂ > 0 (usually 0.01 ≤ ε̂ ≤ 1). Active quantities are
denoted by ĉk, ûk, r̂k, M̂ and inactive quantities are denoted by čk, ǔk, řk, M̌ .

Eliminating inactive directions we obtain

ďu = M̌−1(ǍTdx + č)− ǔ, (8)

[
B̂ Â

ÂT −M̂

] [
dx
d̂u

]
+

[
ĝ(x, u)

(R̂ + Ĉ)−1R̂ĥ(x, u)

]
=

[
rx
r̂u

]
, (9)

where

B̂ = B + ǍM̌−1ǍT , ĝ(x, u) = g(x, u) + ǍM̌−1č.

To obtain direction vectors dx, d̂u, we solve linear equations (9) with sufficient pre-
cisions rx, r̂u and compute ďu by (8). Note that ‖M̂‖ ≤ ε̂, ‖M̌−1‖ < 1/ε̂ and

‖M̂‖ → 0, ‖M̌−1‖ → 0 if ĝ(x.u)→ 0, ĥ(x, u)→ 0.

Symmetric matrix B̂ has a bounded norm and is positive definite if B is positive
definite. For this reason we use a positive definite matrix B = G + E obtained by
using the Gill-Murray decomposition [3] of G = G(x, u) (B is positive definite if it
is obtained by the quasi-Newton method).

Nonsmooth equation methods for nonlinear programming problems are realized
by the following algorithm.

Algorithm 1. Line search method.

Data: Parameter for active constraint determination ε̂. Precisions 0 < ωx < 1,
0 < ωu < 1. Maximum stepsize ∆ > 0.

Input: Initial approximation of a KKT point x.

Step 1: Initiation. Choose initial Lagrange multipliers uk, 1 ≤ k ≤ m, such that
uk 6= 0. Compute value F (x) and vector c(x). If a filter is used, set nF = 1
and F = {F (x),Φ(x, u)}. Set i := 0.

Step 2: Termination. Compute matrix A := A(x) and vector g := g(x, u). If (8)
holds with a required precision, terminate computation, else set i := i+ 1.
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Step 3: Hessian matrix approximation. Determine positive definite matrix B as
an approximation of the Hessian matrix G(x, u).

Step 4: Determination of direction vectors. Divide constraints into active and
inactive parts using parameter ε̂ to obtain system (9). Determine vectors dx, d̂u
as approximate solutions of (9) with precisions rx, r̂u and compute vector ďu
by (8). If a merit function is used, determine value σ ≥ 0 by (12) and compute
derivative ϕ′(0) by (11).

Step 5: Stepsize selection. Determine stepsize t > 0 using Algorithm 2 or Algo-
rithm 3 and set x := x + tdx, u := u + tdu. Compute value F (x), vector c(x)
and go to Step 2.

4. Line search with a merit function

After obtaining direction vectors dx, du, we seek a stepsize t to decrease the value
of the merit function

ϕ(t) = Fj(x+ tdx) + σPj(x+ tdx, u+ tdu), σ ≥ 0, j = 1, 2,

where

F1(x+ tdx) = F (x+ tdx),

F2(x+ tdx) = F (x+ tdx) + (u+ du)
T c(x+ tdx),

P1(x+ tdx, u+ tdu) = ‖h(x+ tdx, u+ tdu)‖1,

P2(x+ tdx, u+ tdu) =
1

2
‖h(x+ tdx, u+ tdu)‖2.

It is necessary that ϕ′(0) < 0 holds and that the stepsize t satisfies the Armijo
condition

ϕ(t)− ϕ(0) ≤ ε1tϕ
′(0), where 0 < ε1 < 1/2. (10)

For subsequent investigations, we use the notation

F1 : χ(r) = dTx rx − (û+ d̂u)
T r̂u,

F1 : γ0 = (u+ du)
TM(u+ du)− (u+ du)

T c,

P1 : γ1 = ‖h‖1 − ‖(R̂ + Ĉ)R̂−1r̂u‖1,

F2 : χ(r) = dTx rx,

F2 : γ0 = 0,

P2 : γ1 = ‖h‖2 − ĥT (R̂ + Ĉ)R̂−1r̂u.

It is necessary that γ1 > 0 holds, which is satisfied if

P1 : ‖r̂u‖1 ≤
ωu
2
‖h‖1, P2 : ‖r̂u‖ ≤

ωu
2
‖h‖, where 0 ≤ ωu < 1.
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Theorem 1 ([4]). Let vectors dx, d̂u be obtained as an approximate solution of (9)
and vector ďu be obtained by (8). Then

ϕ′(0) = −dTxBdx − γ0 − γ1σ + χ(r). (11)

If γ1 > 0,

σ ≥ σ > −d
T
xBdx + γ0

γ1

, (12)

and if system (9) is solved with the precision

χ(r) < dTxBdx + γ0 + γ1σ, (13)

then ϕ′(0) < 0.

Algorithm 2. Line search with a merit function.

Data: Parameters 0 < β < 1, 0 < ε1 < 1/2, minimum stepsize 0 < t < 1.
Derivative ϕ′(0) obtained from (11)

Input: Pair (x, u), values F (x), c(x) and direction pair (dx, du) obtained as a so-
lution of equations (8)–(9).

Step 1: Choose initial stepsize t > 0 (usually t = 1). If ϕ′(0) ≥ 0 go to Step 5.

Step 2: If t < t, go to Step 5, else compute new values F (x+ tdx) and ck(x+ tdx),
1 ≤ k ≤ m.

Step 3: Minimization of the objective function. If the Armijo condition (7) is
satisfied, go to Step 6.

Step 4: Set t := βt and go to Step 2.

Step 5: Restart. Choose well positive diagonal matrix D (usually D = I). Solve
precisely equations (8)–(9) with B replaced by D. Set σ = 0 and compute deriva-
tive ϕ′(0) < 0 from (11). Find stepsize 0 < t < 1 such that F (x+ tdx) < F (x).

Step 6: Terminate stepsize selection (t > 0 is an obtained stepsize).

The line search methods with a merit function are very efficient, namely if we
use the Lagrangian function F2(x, u) and if the penalty parameter can decrease.
Unfortunately, in this case the global convergence cannot be proved.

5. Line search with a filter

Denote for simplicity z = (x, u), Φ(z) = (1/2)‖h(x, u)‖2 and g(z) = g(x, u). At
the same time, although F does not depend on u, let for consistency F (z) = F (x).

Definition 2. Let F (z1) ≤ F (z2) and Φ(z1) ≤ Φ(z2). Then we say that the pair
(F (z2),Φ(z2)) is dominated by the pair (F (z1),Φ(z1)). A filter F = {(Fj,Φj) : 1 ≤
j ≤ nF} is a set of pairs where no pair is dominated by another pair (nF is a number
of pairs in the filter).
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The line search with a filter procedure uses three strategies for obtaining new
trial points. If t < t, where t > 0 is a computed lower bound, we use a feasibility
restoration phase. In this case, we determine a new vector dz ∈ Rn+m and a suitable
stepsize t > 0 by minimizing Φ(z) to satisfy (17). If t ≥ t, we first check whether

F (z + tdz) < Fj or Φ(z + tdz) < Φj (14)

holds for 1 ≤ j ≤ nF (otherwise, the stepsize is shortened). If t ≥ t and

dTz∇F (z) < 0, −dTz∇F (z)t > δ3Φν(z), (15)

where δ3 > 0 a ν > 1, the stepsize selection is terminated if

F (z + tdz)− F (z) ≤ ε1td
T
z∇F (z), (16)

where 0 < ε1 < 1/2 (the Armijo condition). If t ≥ t and (15) does not hold, the
stepsize selection is terminated if

F (z + tdz) < F (z)− δ1Φ(z) or Φ(z + tdz) < Φ(z)− δ2Φ(z), (17)

where 0 < δ1 < 1 and 0 < δ2 < 1 (the filter condition).

Algorithm 3. Line search with a filter.

Data: Parameters 0 < β < 1, 0 < ε1 < 1/2, 0 < δ1 < 1, 0 < δ2 < 1, δ3 > 0,
0 < δ4 < 1, size of filter nF ≥ 1, maximum size of filter mF > 1, filter
F = {(Fj,Φj) : 1 ≤ j ≤ nF} (usually nF = 1 and F = {F (z),Φ(z)}).

Input: Pair z = (x, u), values F (z), Φ(z) and direction vector dz = (dx, du) ob-
tained as a solution of equations (8)–(9).

Step 1: Compute minimum stepsize t > 0 by (18). Choose initial stepsize t > 0
(usually t = 1).

Step 2: If t < t, go to Step 6. If t ≥ t, compute new values F := F (z + tdz) and
Φ := Φ(z + tdz). If (F,Φ) ∈ F (i.e., (14) does not hold), go to Step 5.

Step 3: Minimization of the objective function. If (15) holds and Armijo condi-
tion (16) is satisfied, go to Step 8. If (15) holds and Armijo condition (16) is
not satisfied, go to Step 5.

Step 4: Utilization of the filter. If (15) does not hold and condition (17) is satisfied,
go to Step 7. If (15) does not hold and condition (17) is not satisfied, go to
Step 5.

Step 5: Set t := βt and go to Step 2.

Step 6: Feasibility restoration. Find a new direction vector dz and a suitable step-
size t > 0 in such a way that the values F := F (z + tdz), Φ := Φ(z + tdz)
satisfy conditions (F,Φ) 6∈ F and Φ < Φ(z)− δ′2Φ(z), where δ′2 > 0.
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Step 7: Filter update. Compute values F = F (z) − δ1Φ(z), Φ = Φ(z) − δ2Φ(z).
Remove from the filter pairs (Fj,Φj) dominated by (F,Φ) and add (F,Φ) into
the filter.

Step 8: Terminate stepsize selection (t > 0 is an obtained stepsize).

The minimum stepsize is computed by the rule [8]

t = δ4 min

(
ε0,

δ1Φ(z)

|dTz∇F (z)|
,
δ3Φν(z)

|dTz∇F (z)|

)
, dTz∇F (z) < 0, (18)

t = δ4 ε0, dTz∇F (z) ≥ 0,

where 0 < δ4 < 1.
The line search method with a filter is globally convergent (i.e, the process, started

from an arbitrary point, converges to the KKT point) if the following standard
assumptions are satisfied:

• Functions F (x) and ck(x), 1 ≤ k ≤ m, are twice continuously differentiable.
Function values and derivatives are uniformly bounded.

• Matrices appearing in (9) are uniformly nonsingular.

• Matrices B in (7) are uniformly bounded and uniformly positive definite.

• Conditions |uk| + |ck(x)| ≥ ε (strict complementarity) and rk + ck(x) 6= 0 are
satisfied.

Theorem 2 ([8]). Consider a nonsmooth equation line search method realized by
Algorithm 1 and Algorithm 2. If standard assumptions for global convergence are
satisfied, then ‖h(z)‖ → 0.

Theorem 3 ([7]). Consider a nonsmooth equation method, where equations (8)–(9)
are solved with the precisions

dTx rx ≤ ωxd
T
x B̂dx, ‖r̂u‖ ≤ ωu‖ĉ(x)‖,

where 0 ≤ ωx < 1, 0 ≤ ωu < 1. Let the stepsizes be determined by Algorithm 3. If
standard assumptions for global convergence are satisfied, then the method is globally
convergent.

6. Computational experiments

The computational comparisons were preformed using the system for universal
functional optimization UFO [5] on the collection of test problems TEST21. This
collection contains 18 problems with 1000 variables and is a modification of the col-
lection TEST20 described in [6]. The comparisons were made using the performance
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Figure 1: Comparison of Newton’s methods.
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Figure 2: Comparison of variable metric methods.
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Figure 3: Comparison with the sequential quadratic programming method (SQP).
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profiles for the number of function evaluations (NFV) and for the total computa-
tional time (TIME). The details about performance profiles as well as the meaning
of τ and ρ(τ) used in Figures 1–3 can be found in [1]. The following notation is used:

NE – nonsmooth equation methods, IP – interior point methods,

P – merit function, F – filter,

MN – Newton methods, VM – variable metric methods.
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[1] Dolan, E. D. and Moré, J. J.: Benchmarking optimization software with perfor-
mance profiles. Math. Program. 91 (2002), 201–213.

[2] Fischer, A.: A special Newton-type optimization method. Optimization 24
(1992), 269–284.

[3] Gill, P. E. and Murray, W.: Newton type methods for unconstrained and linearly
constrained optimization. Math. Program. 7 (1974), 311–350.
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Tomáš Marhan, Petr Sváček
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Abstract: This study investigates the generation of aeroacoustic sound
resulting from the interaction of flow with a square cylinder at a Reynolds
number of 150 and a Mach number of 0.2. The analysis combines the Finite
Volume Method (FVM) for fluid dynamics using the OpenFOAM framework
with the Finite Element Method (FEM) for acoustics implemented via the
FEniCS Python library.
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MSC: 76Q05

1. Introduction

For many years, Computational Fluid Dynamics (CFD) has been widely used
across various scientific and industrial fields. With recent advancements in compu-
tational resources, it has become feasible to study also flow-induced noise from bluff
bodies, such as the noise generated by aircraft landing gear or car side mirrors.

Aeroacoustics, the study of noise generated and propagated by fluid flows, poses
a unique challenge because the sound pressure is much smaller than the atmospheric
pressure. Moreover, as the Mach number decreases, the disparity between the fluid
length scale and the acoustic length scale (wavelength) increases. Consequently, the
mesh size required to resolve fluid length scales becomes significantly smaller than
that needed for acoustic length scales. To address this, a variety of Computational
Aeroacoustics (CAA) methodologies have been adopted, many of which separate
the flow field from the acoustic computation in a hybrid approach (see [7] for an
overview). The aim is to derive the equations that describe the generation of sound
waves propagating into the acoustic field, separately from those that define fluid
motion in the unsteady flow. The hybrid approach has been successfully applied in
cases like low Mach airframe noise in [4] and human phonation in [8].

DOI: 10.21136/panm.2024.11

115

http://dx.doi.org/10.21136/panm.2024.11


This study focuses on low Mach number laminar air flow over a square cylinder,
a classical problem in fluid mechanics with practical relevance to building design. The
interaction between the flow and the body leads to vortex shedding, forming a von
Kármán vortex street that generates acoustic waves. The investigation of acoustic
emissions is conducted using a combination of two open-source tools, OpenFOAM
and FEniCS. The integration of these tools is detailed in Chapter 5.

2. The mathematical model

We consider the conservation of mass equation and the conservation of momentum
equation given by

∂ρ

∂t
+∇ · (ρu) = 0 , (1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u− σσσ) = 0 , (2)

where u denotes the fluid velocity, ρ fluid density and t time. For fluid, the stress
tensor σσσ is defined as

σσσ = −p I + τττ , (3)

where p is static pressure, τττ denotes the viscous (shear) stress tensor and I is the unit
tensor. Since air is a Newtonian fluid, the constitutive relation between the viscous
stress tensor and the rate of strain tensor is expressed as

τττ = µ
(
∇u + (∇u)T

)
− 2

3
µ∇ · u , (4)

where µ is dynamic viscosity of the fluid. At low Mach numbers, the fluid is assumed
to be nearly incompressible, implying that the density remains constant and the
velocity field is divergence-free.

In order to obtain unique solution for eq. (1) and (2) we have to consider bounded
domain Ω1 ⊂ R2 with boundary conditions defined on Lipschitz boundary ∂Ω1. The
boundary ∂Ω1 is further subdivided as ∂Ω1 = Γb ∪ Γ1 and Γ1 = Γin ∪ Γout ∪ Γslip, as
illustrated in Fig. 1.

Figure 1: Fluid computational domain.
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The initial-boundary value problem for incompressible fluid is then formulated as:
for t ∈ (0, T ] find u(x, t) : Ω1 × (0, T ]→ R2 and p(x, t) : Ω1 × (0, T ]→ R such that

∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) +

1

ρ0

∇p = 0 in Ω1 × (0, T ] ,

∇ · u = 0 in Ω1 × (0, T ] ,

(5)

where ν is the kinematic viscosity (dynamic viscosity divided by density) of the fluid
and ρ0 is the freestream density. The boundary and initial conditions are prescribed
as follows

u = 0 on Γb × (0, T ] ,

u = (U∞, 0) on Γin × (0, T ] ,

−ν ∂u
∂n

+
p

ρ0

n = 0 on Γout × (0, T ] ,

u · n = 0 on Γslip × (0, T ] ,

∂p

∂n
= 0 on Γ1 \ Γout ∪ Γb × (0, T ] ,

u(x, 0) = (U∞, 0) for x ∈ Ω1 ,

(6)

where U∞ is the freestream velocity and n is the outward unit vector to Γb and Γ1.

Aeroacoustics

The most widely used CAA formulation is Lighthill’s aeroacoustic analogy, where
the governing equations (1) and (2) are reformulated into a wave-like equation, as
detailed in [5]. In this approach, acoustic noise is radiated from a localized region
of fluctuating flow embedded within an infinite homogeneous fluid, see Fig. 2. In
the surrounding fluid, the speed of sound c0, the density ρ0 and the pressure p0 are
constants and the density fluctuations ρ′ = ρ − ρ0 are governed by the standard
homogeneous acoustic wave equation. Within the fluctuating region, the Lighthill’s
aeroacoustic equation is derived by taking the time derivate of the continuity equa-
tion (1) and subtracting the divergence of the momentum equation (2), which yields

∂2 (ρ− ρ0)

∂t2
= ∇ · ∇ · [ρu⊗ u + (p− p0) I− τττ ] , (7)

where p′ = p − p0 are the pressure perturbations. Further substracting the term
c2

0∆ (ρ− ρ0) from both sides of eq. (7), we retrieve the desired inhomogeneous wave
equation (

∂2

∂t2
− c2

0∆

)
(ρ− ρ0) = ∇ · ∇ ·T , (8)

where the Lighthill’s tensor T is introduced as

T = ρu⊗ u +
[
(p− p0)− c2

0 (ρ− ρ0)
]
I− τττ . (9)
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Figure 2: Aeroacoustic computational domain.

The Lighthill’s tensor in eq. (9) consists of three terms. The viscous source term τττ
is significant only at low Reynolds numbers and over sufficiently long distances, so it
is often neglected. Additionally, for low Mach numbers flows and no heat effects, the
fluid can be considered isentropic, meaning the relation p′ = c2

0ρ
′ holds and density

can be approximated by the density of the resting media ρ0. Under these conditions,
the Lighthill’s tensor reduces to T ≈ ρ0 u ⊗ u and eq. (8) results in the following
inhomogeneous wave equation

1

c2
0

∂2p′

∂t2
−∆p′ = ∇ · ∇ · (ρ0 u⊗ u) . (10)

In order to solve eq. (10) we consider the homogeneous fluid region to be finite
and bounded. We denote the aeroacoustic computational domain as Ω0 ⊂ R2 with
Lipschitz boundary ∂Ω0, such that Ω1 ⊂ Ω0, see Fig. 2. The boundary ∂Ω0 is further
subdivided as ∂Ω0 = Γb ∪Γ0. The initial-boundary value problem then reads as: for
t ∈ (0, T ] find p′(x, t) : Ω0 × (0, T ]→ R such that

1

c2
0

∂2p′

∂t2
−∆p′ =

{
∇ · ∇ · (ρ0 u⊗ u) in Ω1 × (0, T ] ,

0 in Ω0 \ Ω1 × (0, T ] ,
(11)

and which satisfies the following boundary and initial conditions

∂p′

∂n
= 0 on Γb × (0, T ] ,

∂p′

∂n
= − 1

c0

∂p′

∂t
on Γ0 × (0, T ] ,

p′(x, 0) = 0 for x ∈ Ω0 ,

∂p′

∂t
(x, 0) = 0 for x ∈ Ω0 ,

(12)

where n is the outward unit vector to Γb and Γ0.
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The acoustic sources ∇ · ∇ · (ρ0 u⊗ u) within the near-field domain Ω1 are eval-
uated using the fluid velocity u obtained from the Navier-Stokes equations for in-
compressible fluid, see eq. (5). Non-reflective boundary condition is prescribed in
eq. (12) on the boundary Γ0 to mitigate acoustic reflections.

3. Finite volume discretization

The discretization of eq. (5) involves subdivision of the domain Ω1 into a finite
number of closed, non-overlapping polygonal cells Vk (with volume |Vk|), such that
Ω1 =

⋃
k∈J Vk, where J is an index set. Integrating eq. (5) over an arbitrary

polygon Vk yields∫
Vk

∂u

∂t
dV +

∫
Vk

∇ · (u⊗ u) dV −
∫
Vk

∇ · (ν∇u) dV +

∫
Vk

1

ρ0

∇p dV = 0 ,∫
Vk

∇ · u dV = 0 .

(13)

The solution of (13) is approximated by piecewise constant functions uk, pk given as

uk ≈
1

|Vk|

∫
Vk

u dV , pk ≈
1

|Vk|

∫
Vk

p dV .

Considering Vk remains constant over time, the time derivative of velocity in eq. (13)
can be cast in form

∫
Vk
∂u/∂t dV ≈ |Vk| duk/dt. For the time discretization, we

first divide the temporal interval (0, T ] into N subintervals, such that T = N∆t,
setting tn = n∆t, with n = 0, . . . , N , where ∆t denotes constant time step. The
Crank-Nicolson scheme is used for the temporal dicretization in the form

duk

dt
≈
[

1

1 + coc

(
un+1
k − un

k

∆t

)
− coc

1 + coc

(
un
k − un−1

k

∆t

)]
, (14)

where coc is an off-centering coefficient, see [6]. For coc = 0 the scheme results in
the implicit Euler scheme, whereas for coc = 1 the central scheme is obtained. In the
following work, coc = 0.9 is used.

For other terms in eq. (13), we employ Gauss’s theorem and approximate them
using the midpoint quadrature rule on the face f ∈ Sk, where Sk is the set of all
faces of the cell Vk and |Sf | denotes the surface of face f , as∫

Vk

∇ · (u⊗ u) dV =

∮
∂Vk

u (u · n) dS ≈
∑
f∈Sk

uf (uf · sf ) =
∑
f∈Sk

uf φf , (15)∫
Vk

ν∆u dV =

∮
∂Vk

ν (∇u) · n dS ≈ ν
∑
f∈Sk

(∇u)f · sf , (16)∫
Vk

1

ρ0

∇p dV =

∮
∂Vk

1

ρ0

(p I) · n dS ≈ 1

ρ0

∑
f∈Sk

(pf I) · sf , (17)
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where sf = n |Sf | and φf = uf · sf represents the volumetric flux at face f . The
continuity equation in (13) enforces the sum of fluxes across all faces to be zero,
i.e.

∑
f∈Sk

φf = 0 in order to satisfy the divergence-free condition. Concerning the
discretization of the fluxes in (15)–(17) and the gradient reconstruction of velocity
in eq. (16) we refer to [6].

For solving the discretized NSE for incompressible fluid, the PIMPLE algorithm
is used as a combination of SIMPLE (semi-implicit method for pressure-linked equa-
tions) and PISO (pressure-implicit algorithm with the splitting of the operator). We
begin by discretizing the momentum equation (13). Let auC and auN represent the
coefficients in the resulting algebraic equations, where C and N refer to the central
and neighboring cells, respectively. The discretized momentum equation then reads

auCuC +
∑
f∈Sk

auNuN = r− 1

ρ0

(∇p)C , (18)

where vector r represents contributions from previous time steps. Next we introduce
operator H(u) = r−

∑
f∈Sk

auNuN such that

uC = (auC)−1

[
H(u)− 1

ρ0

(∇p)C
]
. (19)

We substitute eq. (19) into the continuity equation to obtain a pressure equation

∇ ·
[
(auC)−1(∇p)C

]
= ρ0∇ ·

[
(auC)−1H(u)

]
. (20)

The PIMPLE algorithm is based on a predictor and corrector step. In the predictor
step, we solve eq. (18) using an intermediate pressure to obtain predicted velocity,
which does not yet satisfy the continuity equation. We follow with the corrector step,
in which we solve eq. (20) to obtain corrected pressure, and subsequently divergence-
free velocity is obtained from eq. (19). We repeat these inner and outer loops until
the pressure and velocity fields converge, see [6] for further reference. Additionally,
under-relaxation can be used in each time step to smooth convergence.

4. Finite element discretization

In order to approximate the inhomogeneous wave equation (11) using FEM,
the equation is multiplied by a test function w ∈ V ⊂ H1(Ω0) and integrated over the
entire acoustic domain Ω0. This yields

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

− (∆p′, w)Ω0
= (∇ · ∇ · (ρ0 u⊗ u) , w)Ω0

, (21)

where by (·, ·)D the dot product in L2(D) is denoted. After applying Green’s inte-
gration theorem to the second spatial derivate of p′ as well as to the acoustic source
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term on the right-hand side, the eq. (21) can be rearranged into

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

−
(
∂p′

∂n
, w

)
∂Ω0

+ (∇p′,∇w)Ω0

= (∇ · (ρ0 u⊗ u) · n, w)∂Ω1
− (∇ · (ρ0 u⊗ u) ,∇w)Ω1

.

(22)

Boundary conditions are applied to each boundary term. For the source term in
eq. (22), this leads to the condition (∇ · (ρ0 u⊗ u) · n, w)∂Ω1

= 0 since

(∇ · (ρ0 u⊗ u) · n, w)Γ1
= 0 ,

(∇ · (ρ0 u⊗ u) · n, w)Γb
= 0 ,

(23)

for details, see [2]. This leads to the variational (weak) formulation of Lighthill’s
aeroacoustic equation, which may be stated as: find p′ ∈ V such that

1

c2
0

(
∂2p′

∂t2
, w

)
Ω0

+
1

c0

(
∂p′

∂t
, w

)
Γ0

+

(
∂p′

∂xi
,
∂w

∂xi

)
Ω0

= − (∇ · (ρ0 u⊗ u) ,∇w)Ω1
, (24)

is fulfilled for all w ∈ V . The source term in eq. (24) can be further simplified for
incompressible fluid flows as follows

(∇ · (ρ0 u⊗ u) ,∇w)Ω1
= ρ0 (u · ∇u,∇w)Ω1

. (25)

The semi-discrete Galerkin formulation is obtained from the weak formulation (24)
after discretization of the domain and the introduction of finite element spaces.
A finite-dimensional finite element space Vh ⊂ V with dimension n is chosen and
the solution p′ ∈ V is approximated by ph ∈ Vh written as a time-dependant linear
combination of coefficients pj(t) and basis functions ϕj(x) ∈ Vh, i.e.

p′(x, t) ≈ ph(t, x) =
n∑

j=1

pj(t)ϕj(x) . (26)

Using relation (26) in eq. (24) with wh = ϕi for i = 1, . . . , n leads to the second-order
system of ODEs for an unknown vector p(t) = {pj}nj=1 in the matrix form

1

c2
0

Mp̈(t) +
1

c0

Dṗ(t) + Kp(t) = b(t) , (27)

where the matrices M = {mij}ni,j=1,D = {dij}ni,j=1 K = {kij}ni,j=1 and the vector
b = {bi}ni=1 are computed as follows

mij = (ϕj, ϕi)Ω0
, dij = (ϕj, ϕi)Γ0

, kij =

(
∂ϕj

∂xl
,
∂ϕi

∂xl

)
Ω0

,

bi = −ρ0

(
ul
∂uj
∂xl

,
∂ϕi

∂xj

)
Ω1

.
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The problem described in eq. (27) is discretized in time with the aid of the Newmark
method. This method is formally realized by using approximations

pn+1 = pn + ṗn ∆t+ ((1− 2β)p̈n + 2βp̈n+1)
∆t2

2
,

ṗn+1 = ṗn + ((1− γ)p̈n + γp̈n+1) ∆t ,
(28)

in eq. (27), which is solved for p̈n+1. Values β and γ are taken as β = 0.25, γ = 0.5.

5. Implementation

The finite volume approach available within the OpenFOAM library has been
adopted for space and time discretization of the NSE for incompressible fluid. Tab. 1
briefly describes the basic directory structure for OpenFOAM case that is required
to run the simulation. The exception is the acousticMesh and funcObjects folders,
which include the neccessary data for evaluation of the acoustic sources within the
fluid domain and their subsequent interpolation onto the acoustic domain.

{ 0 → Initial and boundary conditions for fields
x q U
x q p
{ constant
x q transportProperties → Physical properties of the fluid
x q turbulenceProperties → Type of fluid flow
x { polyMesh → Mesh data for the fluid domain
x { acousticMesh → Mesh data for the acoustic domain
{ system
x q controlDict → Simulation’s control parameters
x q fvSchemes → Numerical schemes used for discretizing
x q fvSolution → Solver settings and relaxation factors
x { funcObjects → Custom functions to be applied during

x < . . . simulation

Table 1: OpenFOAM folder structure.

Once the fluid simulation is finished and the acoustic sources have been inter-
polated for the desired time period, the Lighthill’s aeroacoustic equation is solved
using the FEM framework implemented in the FEniCS Python library (see [1]).

After importing the acoustic mesh in .msh format, a finite element function
space V is created. The trial function p and test function w are then defined, followed
by the initialization of fem.Function, which stores the coefficients for the solution.

from dolfinx import fem , import ufl

V = fem.functionspace(msh , ("Lagrange", 1))

p, w = ufl.TrialFunction(V), ufl.TestFunction(V)

p_h = fem.Function(V)
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Similarly, we initalize fem.Function for the divergence of Lighthill’s tensor.
V_divT = fem.functionspace(msh , ("Lagrange", 1, (msh.geometry.dim ,)))

divT = fem.Function(V_divT)

We also prepare data structures for the Newmark method.
p_0 , pdot_0 , pddot_0 = fem.Function(V), fem.Function(V), fem.Function(V)

pddot = p

pdot = pdot_0 + ((1-gamma)*pddot_0 + gamma*pddot) * dt

p_ = p_0 + pdot_0*dt + ((1-2* beta)*pddot_0 + 2*beta*pddot) * dt**2/2

The integration measures are defined to substitute for the different subdomain cells
and their boundary faces.

ds = ufl.Measure("ds", domain=msh , subdomain_data=boundary_tags)

dx = ufl.Measure("dx", domain=msh , subdomain_data=subdomain_tags)

With all the data structures in place, we define the variational formulation.
F = 1 / c_0**2 * ufl.inner(pddot , w) * dx(0) \

+ 1 / c_0 * ufl.inner(pdot , w) * ds(0) \

+ ufl.inner(ufl.grad(p_), ufl.grad(w)) * dx(0) \

+ ufl.inner(divT , ufl.grad(w)) * dx(1)

a, L = ufl.system(F)

Using the finite element variational problem formulation, the class
dolfinx.fem.petsc.LinearProblem is created for solution of the variational problem.
This class utilizes PETSc as the linear algebra backend and a direct solver (LU-
factorization) is employed to solve the linear system.

import dolfinx.fem.petsc

problem = dolfinx.fem.petsc.LinearProblem(a, L, u=p_h , bcs=[], petsc_options)

Finally, the problem is solved repeatedly in time in order to obtain the evolution of
the acoustic pressure field.

t = t_start

while t < t_end + dt:

divT = get_interpolated_OpenFOAM_field(divT , msh , t)

p_h = problem.solve ()

p_0 , pdot_0 , pddot_0 = evaluate_Newmark_fields(p_h , p_0 , pdot_0 , pddot_0)

write_results(p_0 , t)

t += dt

6. Numerical results

A laminar, two-dimensional simulation of an incompressible fluid flow over a
square cylinder is performed. When a rigid square cylinder is immersed in a uniform
flow, it generates strong vortex shedding. The resulting fluctuating forces on the
cylinder induce acoustic waves, which are the focus of this study.

By Lcyl = 3.28 · 10−5 m we denote the dimension of the cylinder. The dimen-
sions of the fluid computational domain Ω1 are then (-30Lcyl, 100Lcyl) × (−25Lcyl,
25Lcyl), with a blockage ratio1 of β = Lcyl/50Lcyl. The acoustic domain Ω0 is a
circle with a radius of 150Lcyl. The mesh within the fluid domain is roughly three
times finer than the mesh for the acoustic simulation, as can be seen in Fig. 3. The
flow properties and the setup of the simulation are listed in Tab 2. The fluid flow

1The ratio of the square cylinder’s frontal area to the domain’s cross-sectional area in the flow
direction.
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Figure 3: Acoustic (black) and
fluid (red) mesh near cylinder.

Setup of the simulation
U∞ = 68.7 m s−1

Lcyl = 3.28 · 10−5 m
ν = 1.5 · 10−5 m2s−1

c0 = 343 m s−1

ρ0 = 1.2 kg m−3

Re = 150
Ma = 0.2

Table 2: Setup of the simulation.

Figure 4: Lift and drag coefficients in time.

cD St
present study 1.42 0.153
Doolan [3] 1.44 0.156

Table 3: Comparison of the mean
drag coeffcient and Strouhal number
with reference values.

solution is sampled after the full vortex street developed from ta0 = 1 · 10−4 s every
10 fluid time steps, i.e. ∆ta = 10−8 s and ∆tf = 10−9 s, until the end of simulation
tend = 1.5 · 10−4 s. The whole time of acoustic simulation is 0.5 · 10−4 s. The lift
and drag coefficients are plotted in time in Fig. 4. The mean drag coefficient cD
and Strouhal number St based on vortex shedding frequency are evaluated and com-
pared to reference values with good agreement, see Tab. 3. The acoustic pressure
values are monitored at three different observer locations. The first two observers
are positioned downstream along the x-axis and along the fringe of the cylinder, re-
spectively. Significantly lower values are anticipated at the third observer location in
the far-field region, see Tab. 4. Fig. 5 presents the acoustic field (scaled by dynamic
pressure) at final time, in which dipole pattern can be seen. The acoustic pressure
values at three observer locations are shown in Fig. 6 in the time and frequency
domain. The main frequency component for observer 2 and 3 corresponds to the
vortex shedding frequency. On the other hand, the main frequency component for
observer 1, located along the x-axis is twice as high. This fact can be associated
with the combination of the upper and lower vortices.
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Figure 5: Acoustic pressure field.

Observers
1: (1 · 10−4, 0, 0) m
2: (1 · 10−4, 2 · 10−5, 0) m
3: (0.002, -0.003, 0) m

Table 4: Positions of the observers
with respect to the origin of the coor-
dinate system located in the center of
the square cylinder.

Figure 6: Acoustic pressure at three observer locations in: (a) the time domain and
(b) the frequency domain.

7. Conclusion

In this study we have adopted a hybrid method for CAA that establishes a foun-
dation for future aeroacoustic investigations. Our primary focus was on a 2D square
cylinder placed within a laminar flow with Reynolds number 150 and Mach num-
ber 0.2. The presence of the square cylinder resulted in the formation of strong
vortices in the downstream region, which induced acoustic waves. The resulting
acoustic pressure obtained by Lighthill’s aeroacoustic analogy was analyzed both in
the near-field and far-field acoutic region. The dominant frequencies for selected
observers correspond with expectations.
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Abstract: The complex (bio)chemical reaction systems, frequently possess
fast/slow phenomena, represent both difficulties and challenges for numerical
simulation. We develop and test an enhancement of the classical QSSA (quasi-
steady-state approximation) model reduction method applied to a system of
chemical reactions. The novel model reduction method, the so-called delayed
quasi-steady-state approximation method, proposed by Vejchodský (2014) and
further developed by Papáček (2021) and Matonoha (2022), is extensively pre-
sented on a case study based on Michaelis–Menten enzymatic reaction com-
pleted with the substrate transport. Eventually, an innovative approach called
the Bohl–Marek method is shown on the same numerical example.

Keywords: mathematical modelling, chemical kinetic systems, model reduc-
tion, quasi-steady-state approximation, M-Matrix, quasi-linear formulation
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1. Introduction

Since Briggs and Haldane’s application of the quasi-steady-state (QSS) assump-
tion, e.g., [11], the idea of reducing complex chemical networks persists in the field of
large-scale (bio)chemical systems modeling, see [12] and references therein. On the
other side of control theory (cooperative biochemical systems), there are inspiring
works of Bohl and Marek [1, 2, 8].

This study presents the development and application of one special model or-
der reduction technique further called the delayed quasi-steady-state approximation
method (D-QSSA), first proposed by Vejchodský in 2014 [13, 14] and further de-
veloped by our group in [9, 10]. We continue in the direction of papers devoted
to the analysis of fast/slow phenomena arising in biology and chemistry, and more
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precisely to the problem of parameter estimation for mathematical models describ-
ing the drug-induced enzyme production networks [3] aiming to develop biologically
meaningful models, which can be used for drug delivery analysis and optimization.
Although our ultimate goal is to develop a reliable method for fitting the model
parameters of large biochemical networks to given experimental data, here we study
certain numerical issues within the framework of efficient computations of inverse
problems involving numerical optimization.

The paper is organized as follows. In Section 2, different numerical methods
are presented. Then, in Section 3, we employ an illustrative case study to compre-
hensively account the pros and cons of each of the analyzed techniques. Section 4
concludes the work and outlines the future work. Finally, Appendix A presents
a straightforward method for setting up the governing ODE system, while Ap-
pendix B provides the reformulation of nonlinear ODEs to the quasi-linear form.

2. Model and methods

This section further introduces the necessary theoretical background and nota-
tions used throughout this study, concerning mainly the fast/slow dynamical sys-
tems [15] and singular perturbation methods (SPM) with delays [6]. Let us consider
the following system of ordinary differential equations (ODE) representing a general
class of mathematical models describing (bio)chemical systems

ẋ(t) = Ax(t) + b(t, x(t)), (1)

for t ∈ [0, T ] with T > 0, where x(t) ∈ Rn, constant matrix A ∈ Rn×n represents
a linear part of the system, and b(t, x(t)) ∈ Rn contains nonlinear, time-varying and
constant parts of the system. The ODE system (1) is further completed by suitable
initial conditions, such that x(0) = x0, defining the initial value problem (IVP). In
the following subsections, we introduce the so-called optimal delayed quasi-steady-
state approximation method (OD-QSSA) and an innovative approach here called the
Bohl–Marek (BM) method.

2.1. Order reduction methods for the fast/slow dynamical systems

Suppose the existence of the fast and slow variables xF ∈ RnF and xS ∈ RnS and

let x(t) =
(
xTF (t) xTS (t)

)T
be the partitioning of x(t), where nF + nS = n. Then

for a general fast/slow ODE system it holds

ε ẋF = fF (xS, xF ; ε),
ẋS = fS(xS, xF ; ε),

(2)

when 0 < ε� 1, and suitable initial conditions are set. Then, the ODE system (2)
can be approximated by a simpler algebro-differential system (an associated slow
subsystem)

0 = fF (xS, xF ; 0),
ẋS = fS(xS, xF ; 0).

(3)
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Equations (3) are called singularly perturbed in the singular perturbation the-
ory, whereas, in the chemical literature, such a model reduction is called a (stan-
dard) quasi-steady-state approximation (QSSA) when the underlying assumption
(0 < ε � 1) assuring small approximation error, i.e., the validity of the standard
QSSA is often referred to as the reactant-stationary assumption [4]. Several mathe-
matical studies are dedicated to quantifying the accuracy of different QSSA methods
applied to enzyme kinetics. Identification of a presumably small parameter ε, see (2),
is common to these efforts, which quantifies the timescale separation. This explicit
identification of a suitable ε for every system and operating condition requires non-
trivial mathematical operations. Consequently, when one tries to omit such analysis,
the non-justified use of the QSSA method frequently occurs, which in fact represents
the QSSA method’s abuse [5].

Our solution to the difficulties mentioned above dwells in the relatively novel
extension of the D-QSSA method, being the delayed QSSA with the optimal constant
delay introduced by Matonoha et al. [9] for a class of chemical networks with the
mass conservation property and a wide timescale separation.

For completeness, we provide the main theorem concerning the existence of an
optimal constant delay. The proof and detailed description can be found in [9].

Theorem 1. Let x̄(t) be a solution of the (full) system (2). Choose arbitrary
numbers 0 < τ ≤ τ < T and a fixed constant delay τ ∈ [τ , τ ]. Let xcdqssF (t, τ)
be a constant delay QSS approximation of xF (t) with this τ . Let xcdqssS (t, τ) be a
solution of the reduced delayed ODE system, continuous for t ∈ [0, T ]. Denote

xcdqss(t, τ) =
(
xcdqssF

T
(t, τ) xcdqssS

T
(t, τ)

)T
. Then there exists at least one value

τ ∗ ∈ [τ , τ ] minimizing the error between x̄(t) and xcdqss(t, τ), i.e.,

τ ∗ = arg min
τ
‖x̄(t)− xcdqss(t, τ)‖2, (4)

subject to 0 < τ ≤ τ ≤ τ < T, where ‖.‖ denotes the vector L2[0, T ]-norm.

2.2. Bohl–Marek method (and a quasi-linear M-matrix formulation)

QSSA may increase the nonlinearity of the model, see, e.g., the Michaelis–Menten
equation for enzyme kinetics [11]. While the ODEs describing enzyme kinetics are
mildly nonlinear (only quadratic through terms containing products of two reac-
tants), the Michaelis–Menten equation represents a rational function in an involved
reactant. Conversely, the Bohl–Marek (BM) method, makes the model quasi-linear
because the ODE system (1) with conservation properties containing the original
mass action kinetics terms can be described using the quasi-linear formulation (5).
As far as we know, the first appearance of this approach can be found in the works
of Erich Bohl and Ivo Marek, see, e.g., [1, 2, 8], where the principle of total mass
conservation was employed to prove the existence of positive solutions and station-
ary states. The details about the BM method applied to our case study problem are
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described in Appendix B, here we state that (under some assumptions) the ODE sys-
tem (1) for a modified state variable vector x̃(t) can be formulated as a quasi-linear
system

dx̃(t)

dt
= M(x)x̃(t), (5)

with the block diagonal system matrix M(x) of a special form of a negative M-matrix
with some elements containing components of a system variable x. The advantages
of this formulation reside in the computational speedup and precision and shall be
highlighted in the next Section 3.

3. Case study

As a case study, we take the paradigmatic example consisting of the Michaelis–
Menten kinetics with a simple transport process described in Tab. 1.

Description of the related process Chem. notation
Substrate Xext dosing ∅ → Xext

R1: Substrate transport through Xext ⇀↽ Xint

a membrane, k0 = 10−1

R2: Enzyme E binds to substrate, Xint + E ⇀↽ C
complex C formation, k1 = 106

R3: Reverse reaction to R2, k−1 = 10−4

R4: Complex breaks down into E plus C → E + P
a product P , k2 = 10−1

Table 1: Transport and reaction processes defining the network, parameter values
taken from [7].

Introducing a new notation for state variables, i.e., an n-size (here n = 5) vector x
according to

x(t) =
(
x1 x2 x3 x4 x5

)T ≡ ( Xext Xin E C P
)T
,

the ODE system describing the process under study can be written either in the
usual form (1), i.e., ẋ(t) = Ax(t) + b(t, x(t)), see Appendix A or in the quasi-linear
Bohl–Marek formulation, see, e.g., [2] and Appendix B, for this special case study.

Equipped by the initial conditions

x(0) =
(
u0 0 e0 0 0

)T
=
(

5 · 10−7 0 2 · 10−7 0 0
)T
, (6)

we compare the numerical results obtained from the full (non-reduced) prob-
lem (1), (6) with those obtained using different models corresponding to different
reduction methods. The state variables x1 and x4 can be considered as fast vari-
ables xF , since they satisfy all assumptions for fast variables mentioned in [13].
Thus we use the notations QSSA1, QSSA4, QSSA14, etc. Besides, we compare the
results with those obtained from the quasi-linear BM formulation (5), (6).
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It is well known that the QSS approximation is derived for larger times (to en-
able the fast variable to reach its steady state) and hence it may not satisfy the
original initial condition. This happens if x1 is considered as a fast variable yielding
xqss1 (t) = x2(t). This conflicts initial conditions x1(0) = u0 > 0 and x2(0) = 0 (it can-
not hold xqss1 (0) = x2(0)). Therefore, we introduce a parameter tQ, 0 < tQ < T , and
derive the QSS approximation for t > tQ, only.

For our numerical experiments, we used parameters given in Tab. 1, T = 120,
and the time step ∆t = 10−3 for solving the respective ODEs by the backward
Euler method. The value m = T

∆t
denotes the total number of steps. To compare

the quality of approximate solutions xA(t) with a solution x̄(t) of the original non-
reduced model (full system) (1),(6), for each of the five state variables we used the
error metrics δi and the total error δ as follows

δ =
1

n

n∑
i=1

δi, δi =

√√√√ 4

m

m∑
j=0

[
x̄i(tj)− xAi (tj)

x̄i(tj) + xAi (tj)

]2

, i = 1, . . . , n. (7)

In (7), the exact solution x̄i(tj), j = 0, 1, . . . ,m, is supposed to be the solution
computed using the non-reduced model (full system) (1),(6). The values xAi (tj),
j = 0, 1, . . . ,m, i = 1, . . . , n, are approximate solutions computed from the mod-
els QSSAk (i.e., xqss(tj)), D-QSSAk (i.e., xdqss(tj) with the delay τ(t) = 1/g(t)),
OD-QSSAk (i.e., xodqss(tj) with an optimal constant delay τ ∗ in the sense of opti-
mization problem (4), see Theorem 1), k = 1, 4, 14, and from the BM formulation.
The nonconstant delays in models D-QSSAk are τ1(t) = 1/g1(t) = 1/k0 = 10 and
τ4(t) = 1/g4(t) = 1/(k−1 + k2 + k1x1(t)), respectively. Note that τ1 is constant
because the function g(t) = k0 is constant.

A schematic description of the studied models with obtained optimal values tQ
and optimal constant delays τ ∗1 , τ ∗4 are given in Tab. 2. Other columns give the total
error metric δ, see (7), and the computational time obtained for 1000 simulations
with exactly the same parameter values. The last column shows the speedup ob-
tained as the ratio of computational times between individual models and the full
non-reduced model.

Fig. 1 shows the behaviour of state variables x1 and x4 for different models
QSSAk, D-QSSAk, OD-QSSAk, k =1,4, and BM. The left picture shows the value
tQ = 10.77, from which the quasi-steady-state solutions are considered. Different ap-
proaches (xqss(t), xdqss(t), xodqss(t)) give different solutions. The right picture shows
the optimal constant delay τ ∗4 = 4.897 which gives zero quasi-steady-state solution
x4(t) = 0, t ∈ [0, τ ∗4 ]. Note that the nonconstant delay τ4(t) = 1/g(t) for a D-QSS ap-
proximation is for small t nearly the same as the optimal constant value τ ∗4 = 4.897.
Besides, notice that the BM quasi-linear solution is almost the same as the solution
of non-reduced model (1), (6).

Resuming: It can be seen that although it is possible to find optimal values of
constant delays τ ∗ that can significantly speed up the computation when x1 and x4

are fast (we are solving small ODE systems), it is more efficient to convert the

131



model description tQ delay τ total δ time speedup
non-reduced system (1),(6) - - - 21.94 1.00
QSSA1 x1 fast opt. - 1.0408 18.18 0.83
QSSA4 x4 fast - - 0.2736 18.28 0.83
QSSA14 x1, x4 fast opt. - 1.1524 5.78 0.26
D-QSSA1 x1 fast opt. τ1 = 1/g1(t) 0.2960 21.58 0.98
D-QSSA4 x4 fast - τ4 = 1/g4(t) 0.1896 20.34 0.93
D-QSSA14 x1, x4 fast opt. τi = 1/gi(t) 0.3237 9.27 0.42
OD-QSSA1 x1 fast 10.77 τ ∗1 = 12.753 0.1634 21.58 0.98
OD-QSSA4 x4 fast - τ ∗4 = 4.897 0.1952 17.44 0.79
OD-QSSA14 x1, x4 fast 12.54 τ ∗1 = 12.417 0.1563 6.03 0.28

τ ∗4 = 11.426
BM system (5),(6) - - 0.0006 5.30 0.24

Table 2: Comparison of the studied models: (i) Schematic description, (ii) Com-
puted and used optimal values tQ and delay τ ∗, (iii) Computed total error δ, (iv)
Computational times and the speedup.

0 20 40 60 80 100 120
0

1

2

3

4

5

10
-7 x

1
(t)

QSSA1

D-QSSA1

OD-QSSA1

BM quasi-linear

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2
10

-7 x
4
(t)

QSSA4

D-QSSA4

OD-QSSA4

BM quasi-linear

Figure 1: Comparison of x1(t) and x4(t) obtained using different models.

problem to the BM quasi-linear form, obviously, if and only if all the corresponding
requirements are met (especially the conservation properties).

4. Contribution and Outline

We presented one relatively unknown model reduction technique for a class of
(bio)chemical reaction networks proposed first by Vejchodský in [13]. The assump-
tions for this, the so-called D-QSSA approximation are not too restrictive and
D-QSSA applies to the majority of (bio)chemical systems based on the law of mass
action. While the standard QSSA ignores the time-fast variables needed to reach
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their steady states, the advantage of D-QSSA (and its variant OD-QSSA) is the pos-
sibility of a time delay introduction to improve the accuracy. This general conclusion
was supported by the example presented in Section 3, where we used the case study
of enzyme-catalyzed reactions with a substrate transport chain, see [9] for further
details. Moreover, we performed a preliminary comparison of numerical computa-
tions for two equivalent formulations of governing (non-reduced) ODEs, i.e., for the
classical formulation (1) and the quasi-linear Bohl–Marek formulation (5), show-
ing the considerable speedup for the latter. It is due to eliminating the nonlinear
part b(t, x(t)) from the system which causes a numerical burden when solving ODEs.
Rigorous analysis of numerical issues related to both approaches is the subject of
our ongoing work.
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Systems. Birkhäuser Cham, 2022.

[7] Higham, D. J.: Modeling and simulating chemical reactions. SIAM Review 50
(2008), 347–368.

[8] Marek, I.: On a class of stochastic models of cell biology: Periodicity and con-
trollability. In: Positive Systems, pp. 359–367. Springer Berlin Heidelberg, 2009.

133
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Appendix A

Matrix A of constant coefficients and vector of nonlinear terms b(t, x(t))

The system of differential equations (1) describing the processes under study
can be systematically derived using the vector of reaction rates and the so-called
stoichiometric matrix S ∈ Rn×q, where q is the number of reactions (including the
transport of species). Generally, for chemical reaction networks, the governing ODE
system, i.e., the vector of changes in species concentrations x ∈ Rn, is described as
a linear transformation (imposed by the matrix S) of the reaction rate vector ν ∈ Rq

(depending on corresponding states x and a model parameter vector p). For our case
study x ∈ R5, q = 4 (see Tab. 1 in Section 3), and it holds:

ẋ(t) = S ν(x, p), where p = (k0, k1, k−1, k2)T , (8)

S =

R1 R2 R3 R4
−1 0 0 0

1 −1 1 0
0 −1 1 1
0 1 −1 −1
0 0 0 1

 , ν =


k0 (x1 − x2)
k1 x2 x3

k−1 x4

k2 x4

 . (9)
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Thus, the ODE system in the usual form (1), i.e., ẋ(t) = Ax(t) + b(t, x(t)), has
the constant matrix (the linear part of the system)

A =


−k0 k0 0 0 0
k0 −k0 0 k−1 0
0 0 0 k−1 + k2 0
0 0 0 −(k−1 + k2) 0
0 0 0 k2 0

 (10)

and the vector representing the nonlinear part

b(t, x(t)) =


0

−k1 · x2(t) · x3(t)
−k1 · x2(t) · x3(t)
k1 · x2(t) · x3(t)

0

 . (11)

Remark 2. Reaction networks frequently possess subsets of reactants that remain
constant at all times, i.e., they are referred to as conserved species. Generally, there
exists a conservation matrix Γ (of dimension h × n), where the rows represent the
linear combination of species (reactants) that are constant in time. It can be solved
explicitly for large systems (0 = Γ S). For our case of S in form (9), the conservation
property reads

x3 + x4 = e0, x1 + x2 + x4 + x5 = u0. (12)

Consequently, here

Γ =

(
0 0 1 1 0
1 1 0 1 1

)
. (13)

The existence of two relations (12) signifies not only the possibility to reduce
the number of state variables, but also induces the reformulation of the governing
equations for species concentration using negative M-matrices, see Appendix B.

Appendix B

Matrix M and Bohl–Marek formulation

Based on the mass conservation properties, the non-linear ODEs (1) can be rep-
resented as a linear system with the system matrix of a special form, a negative
M-matrix. To the best of our knowledge, this approach was first proposed by Erich
Bohl and Ivo Marek [1, 2] and further extended into the framework of control theory
in [8].

For the case study defined by Tab. 1, the state variables can be listed in two
subsets {x3, x4}, {x1, x2, x4, x5} and the non-linear ODEs (1) can be represented as
a linear system with the system matrix of a special form, a negative M-matrix whose
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column sums are zero.1 These two subsets of state variables can be assembled and
merged as follows:

x̃(t) =
(
x(1)T (t), x(2)T (t)

)T
,

where

x(1)(t) =

(
x3(t)
x4(t)

)
, x(2)(t) =


x1(t)
x2(t)
x4(t)
x5(t)

 . (14)

Then the ODE system for a modified state variable vector x̃(t) gets the form which
was already announced in (5):

dx̃(t)

dt
= Mx̃(t). (15)

For our case study problem, the block diagonal system matrix M = M(x(t)) is of
a special form

M =

(
M1 0
0 M2

)
, (16)

where

M1 =

(
−k1 · x2 k−1 + k2

k1 · x2 −(k−1 + k2)

)
, (17)

M2 =


−k0 k0 0 0
k0 −k0 − k1 · x3 k−1 0
0 k1 · x3 −(k−1 + k2) 0
0 0 k2 0

 . (18)

1This property in fact assures the conservation of the sum of all components of the (new) state
variable vector x̃.
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Abstract: This paper deals with the basic preconditioning and deflation vari-
ants of the FETI-1 and TFETI-1 methods, with (T)FETI-1 with deflation
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1. Introduction

The Finite element tearing and interconnecting (FETI) methods are probably
the most commonly used domain decomposition methods for a parallel numerical
solution of PDEs. In Section 2, the mathematical formulations of basic FETI meth-
ods: FETI-1 and TFETI-1 are presented. The basic ways of their preconditioning
are introduced in Section 3. In Section 4, the principle of the deflated conjugate
gradient method is presented. In Section 5, mathematical formulations of applied
methods of deflation are introduced. In Section 6, the results of numerical exper-
iments performed on the simple benchmark 2D FEM-discretized problem of linear
elasticity are presented.

2. FETI-1 and TFETI-1 methods

In all methods of the FETI-type, the global problem of linear elasticity discretized
by FEM, defined on discretized linear elastic domain, is decomposed into several
local problems defined on non-overlapping subdomains which are then glued via
conditions of displacements continuity across their mutual interfaces, which leads to
the constrained minimization problem of quadratic programming [1]:
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min (1/2)uTKu− uTf s.t. Bu = o (1)

K = diag
(
K1 · · · Ki · · · KNs

)
, K ∈ Rn×n (2)

u =
[
uT
1 · · · uT

i · · · uT
Ns

]T
; f =

[
fT
1 · · · fT

i · · · fT
Ns

]T
; u ∈ Rn×1; f ∈ Rn×1 (3)

where blocks Ki, ui, fi are blocks associated with ith subdomain denoting its stiffness
matrix, vector of deformation parameters of nodes of the subdomain, and vector of
external loading concentrated into the subdomains nodes.

Equality conditions: Bu = o, B ∈ Rm×n ensure the continuity of node dis-
placements by gluing its subdomains on their interfaces. The Dirichlet boundary
conditions (BCs) are prescribed by modifying K and f in corresponding columns
and rows (FETI-1), or by adding Dirichlet BCs to the problem constraints expressed
by Bu = o (TFETI-1). The constraints Bu = o are then enforced by the vector of
Lagrange multipliers λ, where λ ∈ Rm×1.

Problem (1) can be expressed as the following saddle-point problem:[
K BT

B O

] [
u
λ

]
=

[
f
o

]
. (4)

The vector of solution u can be expressed from the first equation in (4)

u = uImK + uKerK = K+(f −BTλ) +Rα,R ∈ Rn×r, α ∈ R r×1 (5)

where K+ is some form of a generalized inverse of K, and R is the matrix whose
columns are the basis of KerK, so it should also hold: RT (f −BTλ) = o.

Dualizing this problem and using the standard FETI notation [2]:

F = BK+BT ; d = BK+f ;G = −RTBT ; e = −RTf, (6)

the following problem is obtained:[
F GT

G O

] [
λ
α

]
=

[
d
e

]
. (7)

After homogenizing: Gλ = e using λ0 = GT (GGT )
−1
e, λ0 ∈ ImGT , the remaining

part of λ is µ in KerG, and the following minimization problem is obtained [2]:

min (1/2)µTFµ− µT (d− Fλ0) s.t. Gµ = o. (8)

The equality constraint can be enforced by dual penalty or more efficiently by the
orthogonal projector P onto KerG, P ∈ Rm×m [2]:

P = I −GT (GGT )−1G, (9)

so that the minimization problem is equivalent to the problem of finding the solution
x̄ of the system of linear equations

Ax = b;A = PFP ;x = µ; b = P (d− Fλ0), (10)

which is solved iteratively, typically by the conjugate gradients (CG).
The primal solution ū can be reconstructed as follows: [2]

α = (GGT )
−1
G (d− F (λ0 + x)); u = K+(f −BT (λ0 + x)) +Rα. (11)
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3. Preconditiong and preconditioned conjugate gradients (PCG) method

There exist two basic FETI preconditioners for FETI-1 and TFETI-1, both ap-
proximating the inverse of the matrix F . To assemble these preconditioners, the
stiffness matrix K has to be divided into 4 blocks [3]:

K =

[
Kii Kib

KT
ib Kbb

]
, (12)

where Kii, and Kbb are composed of elements of K associated with subdomains’
internal, respectively boundary nodes, etc. Likewise, the gluing matrix B should be
divided into blocks Bi and Bb: B =

[
Bi Bb

]
. The block Bi, associated with internal

nodes of subdomains, is always a zero matrix, since the conditions of equality of the
deformation parameters, respectively Dirichlet BCs of the problem, are expressed
only between or for boundary nodes of the subdomains.

3.1. Dirichlet preconditioner (DP)

The Dirichlet preconditioner is expressed as follows [3]:

FD−1

I =
[
Bi Bb

] [O O
O Sbb

] [
BT

i

BT
b

]
= BbSbbB

T
b , Sbb = Kbb −KT

ibK
−1
ii Kib, (13)

where Sbb is the Schur complement of the block Kii.

3.2. Lumped preconditioner (LP)

The matrix of the lumped preconditioner is an approximation of the Dirichlet
one with only the first term in the relation for computation of Sbb used [3]:

FL−1

I =
[
Bi Bb

] [O O
O Kbb

] [
BT

i

BT
b

]
=

[
Bi Bb

] [Kii Kib

KT
ib Kbb

] [
BT

i

BT
b

]
= BKBT . (14)

The lumped preconditioner is less accurate and less optimal approximation of the
inverse of F , so its effect as a preconditioner on improving the spectral properties of
the system matrix and reducing the number of PCG iterations is smaller than with
the Dirichlet preconditioner, but its computation is significantly cheaper [3].

4. Deflation and deflated conjugate gradient (DCG) method

When solving the system of equations Ax = b using the CG method, the kth ap-

proximation xk of the solution vector is found as the minimizer of quadratic function

f(x) = 1
2
xTAx− xT b over the kth Krylov subspace Kk(A, r0).

The basic idea of the DCG method is to enrich the Krylov subspace Kk by some
subspace W , the so-called deflation subspace. If W is defined conveniently, a faster
convergence of the CG method, solving the system, can be anticipated [4], [5].

Let the subspace W be spanned by column vectors wj forming the matrix W :

W =
[
w1 . . . wj . . . wm

]
(15)

then the projector PD on A-conjugate complement of the deflation subspace W can
be formulated as follows [4], [5]:
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PD = I −QA = I −W (W TAW )−1W TA. (16)

In the DCG method, the process of a solution can be split into 2 parts: solution on
the deflation subspace W and solution on its A-conjugate complement. It is achieved
using the fact that in a classical CG method it holds that the vector rk of the residual
in the kth iteration is orthogonal to kth Krylov subspace Kk(A, r0), over which the
quadratic functional f(x) is minimized in the kth iteration [4], [5].

If some arbitrary initial guess x−1 is given, then the corresponding vector of
residual is r−1 = b−Ax−1, and the correction x0 of the initial guess in the deflation
subspace W is then computed as follows [4], [5]:

x0 = x−1 +Qr−1 = x−1 +W (W TAW )−1W T r−1. (17)

If the last equation is multiplied by W TA from the left, then

W TAx0 = W TAx−1 +W TAW (W TAW )−1W T (b− Ax−1) (18)

W T b−W TAx0 = W T ro = o, (19)

so that the vector r0 corresponding to x0 satisfies the condition of its orthogonality
to W , i.e., it has no components in W , and thus x0 is the exact solution in W .

If columns of the deflation matrix W are exact eigenvectors of the system matrix
A computed in exact arithmetics, it holds: W TA = ΛW T , where Λ is a diagonal
matrix with eigenvalues of A, with the kth entry corresponding to the kth column
of W , i.e., to the kth of the chosen eigenvectors. Thus, in such case also the kth
Krylov subspace Kk(A, r0) is orthogonal to W since W TAk−1 = Λk−1W T .

Since the residual rk in the kth iteration of the CGmethod belongs toKk+1(A, r0),
k = 0, 1, . . . , then rk is orthogonal to and thus has no components in W .

However, since the computations in reality cannot be performed in exact arith-
metic and W generally does not consist of exact eigenvectors of A, the residual rk
is not A-conjugate to W , in general. Thus, conjugate directions pk are generally
not A-conjugate to W since in standard CG it holds: pk+1 = rk+1 + βk+1pk, which
is a problem since the approximations xk of a solution are searched only on the A-
conjugate complement of W . Thus, some sort of correction has to be performed in
the iteration process to make the vectors pk A-conjugate to W , so that the approxi-
mations xk are searched only in the A-conjugate complement of W .

The correction is performed in a way that in relation used to compute the vector
pk in the standard CG method, the vector of residual rk is projected onto the A-
conjugate complement of W , by multiplying it by the projector PD defined in (16),
so the relations for computing p0 and pk+1, k = 0, 1, . . . get the following form:

p0 = PD r0; pk+1 = PD rk+1 + βk+1pk. (20)

By ensuring that the approximations xk of the solution during the iterative process
of DCG are searched only on the A-conjugate complement of the deflation sub-
space W , the required splitting of the solution into components on W (in the form
of correction of the initial guess) and on its A-conjugate complement is achieved.
The CG, PCG, and DCG algorithms are presented in Table 1.
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CG PCG DCG

Input : A, b, x0, k = 0 Input : A, b, x0,M
−1, k = 0 Input : A, b, x−1,W, k = 0

Q = W (WTAW )−1WT

PD = I −QA

r−1 = b−Ax−1

x0 = x−1 +Qr−1

r0 = b−Ax0 r0 = b−Ax0 r0 = b−Ax0

z0 = M−1r0

p0 = r0 p0 = z0 p0 = PD r0

while (some ending criterium) while (some ending criterium) while (some ending criterium)

s = Apk s = Apk s = Apk

αk = (rTk rk)/(s
T pk) αk = (rTk zk)/(s

T pk) αk = (rTk rk)/(s
T pk)

xk+1 = xk + αkpk xk+1 = xk + αkpk xk+1 = xk + αkpk

rk+1 = rk − αks rk+1 = rk − αks rk+1 = rk − αks

zk+1 = M−1rk+1

βk+1 = (rTk+1rk+1)/(r
T
k rk) βk+1 = (rTk+1zk+1)/(r

T
k zk) βk+1 = (rTk+1rk+1)/(r

T
k rk)

pk+1 = rk+1 + βk+1pk pk+1 = zk+1 + βk+1pk pk+1 = PD rk+1 + βk+1pk

Output : xk Output : xk Output : xk

Table 1: CG, PCG and DCG algorithms

5. (T)FETI-2 – deflated variant of (T)FETI-1

In this section, it is considered that deflation is applied on the CG method solv-
ing the final system of equations obtained by decomposition of the FEM-discretized
problem of 2D linear elasticity by (T)FETI-1. It is also presumed that both the dis-
cretization and decomposition of the analyzed linear elastic domain are conforming.

5.1. Deflation by equality of displacements in corner nodes (CE)

Equation BCu = o expresses the equality conditions of the corresponding dis-
placement components of mutually corresponding corner nodes on the interfaces of
neighbouring subdomains in two perpendicular directions x and y.

Since conditions BCu = o are already included in conditions Bu = o using the
matrix B, the matrix BC can be obtained by splitting B into two parts as follows

B =
[
BT

C BT
R

]T
, with BR expressing the equality conditions of displacements of the

remaining nodes by BRu = o, which are not in corners of subdomains.

The deflation matrix W is: W = BBT
C =

[
BT

C BT
R

]T
BT

C =
[
BCB

T
C BCB

T
R

]T
=[

BCB
T
C OT

]T
, where in case of orthonormal rows of B it holds: W =

[
I OT

]T
.

5.2. Deflation by equality of the displacement averages and by moment
equilibrium of gluing forces on subdomains’ interfaces

In this method of defining the deflation subspace W , at first the matrix BA has
to be defined. This matrix will be divided into two vertical blocks BA A and BA M ,

i.e. BA =
[
BT

A A BT
A M

]T
for purposes of following formulations.
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The block BA A in the relation BA Au = o expresses the conditions enforcing the
equality of the averages of values of displacement components of each node along
opposite sides of each corresponding interface of 2 subdomains.

The block BA M is used to express the conditions of moment equilibrium of the
force system of solitary forces of contributions of the notional total gluing force,
acting on the interfaces of two subdomains, distributed continuously and uniformly
along their length, as contributions concentrated in each corresponding node on
either side of the interface, with the total force distributed uniformly (averaged)
among the contributions, in terms of their magnitude and direction. The moments
of the forces of contributions concentrated in corresponding nodes are all related to
the same reference point, here always the point with the global coordinates [0,0].

The moment of the corresponding component, in direction of axis x, or y, of the
solitary force of corresponding contribution of the total gluing force, concentrated
into the node on interface, denoted as 12, of two subdomains: 1 and 2, related to
the point [0,0] is equal to the corresponding element of the vector of the product of
transpose of the corresponding row of matrix BA M , with the corresponding element,
denoted e.g. as λA M12 of the vector λA M , where sum of all the elements of the
product equals zero, i.e., the moment equilibrium of the force system is ensured.

The deflation matrix W is computed as W = BBT
A.

5.2.1. Conditions of averages equality (AE)

The formulation of the conditions of equality of averages of displacement compo-
nents in two directions x and y, of nodes lying along opposite sides of the interface,
denoted as 12, of two subdomains: 1 and 2, of decomposed domain, is following:

x :
1

n

n∑
k=1

u1k x
− u2k x

= 0, y :
1

n

n∑
k=1

u1k y
− u2k y

= 0, (21)

where n is the number of nodes on side of the interface and u1(2)k x(y)
is the displace-

ment component of the k-th node in the x(y) direction. The structure of the two
corresponding rows of the BA A matrix expressing these two conditions is then:

1

n

 11 x 11 y · · · 1k x 1k y · · · 1n x 1n y 21 x 21 y · · · 2k x 2k y · · · 2n x 2n y

O 1 0 · · · 1 0 · · · 1 0 O −1 0 · · · −1 0 · · · −1 0 O
O 0 1 · · · 0 1 · · · 0 1 O 0 −1 · · · 0 −1 · · · 0 −1 O

 (22)

The conditions of equality of displacement averages on the interface are implicitly
also the conditions of equilibrium of the force system of solitary forces of discrete
contributions of the total gluing force into corresponding nodes on that interface.

5.2.2. Conditions of moment equilibrium (ME)

The condition of moment equilibrium of the discrete contributions of the total
gluing force acting along entire length of the interface 12 of two subdomains: 1 and 2,
concentrated and uniformly distributed in each node on either corresponding side of
the interface, with moments all related to the reference point [0,0], is enforced using
the corresponding row of BA M of the following structure:
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[
11 x 11 y · · · 1k x 1k y · · · 1n x 1n y 21 x 21 y · · · 2k x 2k y · · · 2n x 2n y

O −y1 x1 · · · −yk xk · · · −yn xn O y1 −x1 · · · yk −xk · · · yn −xn O

]
, (23)

where, x(y)1(k, n) is the x(y)-coordinate, in the global coordinate system, belonging
to the first (k-th, last) node on each side of the interface.

5.3. Deflation by the eigenvectors of the system matrix (EIG)

As it was mentioned in Section 4 concerning the DCG method, the deflation
matrix W should be in an ideal case composed of the (exact) eigenvectors of the
system matrix A. If the columns W are exact eigenvectors of the system matrix A
computed in exact arithmetic, then W TA = ΛMW T , where ΛM is a diagonal matrix
with eigenvalues of A, where the kth diagonal entry (kth eigenvalue) corresponds to
the kth column of W .

To achieve the desired effect of deflation in significantly improving the spectral
properties of the spectral operator PDA in the iterative process of the DCG method,
and thus speeding up convergence of the iterative process, the eigenvectors of the
matrix A that slow down convergence the most should be deflated, which are usually
those corresponding to the extremal, usually the lowest, eigenvalues of A. If the
eigenvectors of A, which form W , are favourably selected, then the desired effect of
deflation can be reached for a relatively small number of eigenvectors of A, which
leads to a small matrix W TAW of the coarse problem (CP) in the DCG method and
thus to a computationally cheap solution of CP [4], [5].

However, the process of obtaining the eigenvalues and eigenvectors is generally
very costly, and thus the solution of the system of linear algebraic equations Ax = b
by the CG method with a good preconditioner is often faster, in terms of the total
time needed for the assembly of the preconditioner, or the deflation matrix, and the
subsequent solution of the system using the PCG, or DCG method.

5.4. Deflation by discrete wavelet transform (DWT)

In the following text, it is considered that the discrete Haar wavelet, as the
structurally simplest, is applied during the DWT. The Haar wavelet has two filters,
the “low-frequency” and “high-frequency”, which are used to obtain the components
of some signal corresponding to the low/high frequencies.

The process of splitting 1D signal, represented by vector x, into its low- and high-
frequency components, is in kth level of forward DWT represented by decomposition
of the vector ak−1, with a0 = x, lying in so-called (k − 1)th discretized scaling sub-
space Vk−1, on its so-called approximation coefficients ak (corresponding to the lower
frequencies), lying in kth discretized scaling subspace Vk, and detailed coefficients dk
(higher frequencies), in so-called kth discretized wavelet subspace Wk as orthogonal
complement of Vk in Vk−1, is carried out by the gradual application of corresponding
orthogonal projectors Hk (from Vk−1 onto Vk) and Gk (from Vk−1 onto Wk).

This means that in the k-th level, where k = 1, . . . ,M , with M being the given
chosen total number of levels of DWT performed, it holds:
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ak = Hkak−1, dk = G1ak−1,

[
ak
dk

]
=

[
Hk

Gk

]
ak−1. (24)

Thus the vector aM obtained after M compressions (M levels of forward DWT)
applied on the vector x, of length equal to N/2M , or to its closest higher or lower
integer to N/2M , of original signal x (of length N) can be expressed using the matrix
H of the total projector from the space V0 = l2(N) to the VM in the following way:

aM = HMHM−1 . . . Hk . . . H2H1x = Hx. (25)

The inverse DWT of aM is then given by multiplication of aM by transpose of H,
i.e. by HT , where the vector obtained by applying M levels of inverse DWT using
HT on the vector obtained by M levels of DWT on x using matrix H, only the trend
part of the signal represented by x is preserved.

If DWT is applied to square matrices A in order to obtain only its components
corresponding to its lower eigenvalues, the projector H is applied to the columns and
its transpose HT on transformed rows, so that the matrix obtained by 2D FDWT of
A is a matrix AT = HAHT . The deflation matrix W is obtained as W = HT .

The matrix Hk of the orthogonal projector from Vk−1 onto Vk has structure:

Hk =
1√
2

[
. . . 1 1 0 0

0 0 1 1
. . .

]
. (26)

The vector (matrix) on which the projector Hk, without modification, is applied
at the kth level of DWT must have the length (dimensions) divisible by 2. If it does
not hold, then some adjustment of the structure of Hk has to be performed; see [6].

In numerical experiments, the case where the structure of matrix of orthogonal
projector Hk was adjusted with regard to the fact that 2D decomposed discretized
problem of linear elasticity is solved in a following way (27), was also tested:

Hk,2D =
1√
2

[
. . . 1 0 1 0

0 1 0 1
. . .

]
, (27)

so that H2D = HM,2DHM−1,2D . . . H1,2D and W2D = HT
2D.

5.5. Deflation by discrete Fourier transform (DFT)

DFT of some vector x ∈ l2(N) is in fact the computation of its coordinate vector
c in complex orthonormal discrete Fourier basis of the vector space l2(N). The kth
component ck, of the vector c as the DFT of the vector x can be computed as the
complex inner product of x, with the kth Fourier basis vector having the structure:

Fk =
1√
N

[
1 (e2πi/N)k · · · (e2πi/N)nk · · · (e2πi/N)(N−1)k

]T
. (28)

The deflation matrix W is then composed of the first M vectors Fk, of a discrete
Fourier basis, where k = 0, 1, . . . ,M − 1 as follows:

W =
[
F0 F1 · · · Fk · · · FM−1

]
. (29)
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The deflation matrix W can again have its structure adjusted with regard to
solution of 2D elasticity problem, where the block Fk,2D of the deflation matrix W ,
replacing the kth discrete Fourier basis vector, is constructed using kth discrete
Fourier basis vector of the vector space l2(N/2), and it has the following structure:

Fk,2D =
2√
N

 1 0 · · · e
2πi(nk)

N/2 0 · · · e
2πi(N/2−1)k

N/2 0

0 1 · · · 0 e
2πi(nk)

N/2 · · · 0 e
2πi(N/2−1)k

N/2

T

. (30)

The deflation matrix, with structure adjusted with regard to solving the 2D decom-
posed discretized problem of linear elasticity, denoted as W2D, is defined as follows:

W2D =
[
F0,2D F1,2D · · · Fk,2D · · · FM−1,2D

]
. (31)

5.6. Deflation by discrete cosine transform (DCT)

DCT works on similar principle as DFT, only the complex discrete Fourier basis
is replaced by real discrete cosine basis, whose kth vector has following structure:

Ck =

√
2− δk,0

N

[
cos

(1/2)kπ

N
· · · cos

(n+ 1/2)kπ

N
· · · cos

(N − 1 + 1/2)kπ

N

]T
, (32)

and the deflation matrix W is then composed of the first M vectors of this discrete
cosine basis Ck, k = 0, 1, ...,M − 1 :

W =
[
C0 C1 · · · Ck · · · CM−1

]
. (33)

The structure of the deflation matrixW , respectively of the vectors Ck as the columns
of W can be again adjusted with regard to solving 2D problem of elasticity

Ck,2D =

√
2− δk,0
N/2

 · · · cos
(n+ 1/2)kπ

N/2
0 · · ·

· · · 0 cos
(n+ 1/2)kπ

N/2
· · ·


T

, n = 0, 1, . . . ,
N

2
− 1, (34)

resulting in W2D with the structure:

W2D =
[
C0,2D C1,2D · · · Ck,2D · · · CM−1,2D

]
. (35)

6. Numerical experiments

As the benchmark problem used in numerical experiments, model 2D linear
elasticity problem, see Fig. 1, defined on 2D linear elastic domain, decomposed
into (1/H)2 identical square non-overlapping subdomains with edge lengths H =
1/2, 1/4, 1/8, 1/16, was chosen. The subdomains were discretized by 2D identical
finite elements of shape of isoscleses right-angled triangle with length h. There are
presented the results of numerical experiments only for value of the ratio H/h = 8.

All algorithms were implemented and numerical experiments were performed in
Matlab, as the stopping criteria was used: ||rk|| ≤ ϵ||b||, where always: ϵ = 10−6,
and the initial guess x0 was always zero vector.

Table 2 presents the corresponding dimensions of the problems for given H using
FETI-1/TFETI-1. The dimensions of the deflation subspace W for each tested
variant of deflation are presented in Table 3 .
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(a) Definition of the problem (b) Solution of the problem

Figure 1: The benchmark: 2D problem of linear elasticity

H 1/2 1/4 1/8 1/16

Primal dimension 648 2592 10368 41472

Dual dimension (dim(A)) 70/104 414/480 1918/2048 8190/8448

dim(KerK) = (dim(KerA) 6/12 36/48 168/192 720/768

rank(A) = dim(A)− dim(KerA) 64/92 378/432 1750/1856 7470/7680

Table 2: Problems dimensions (A = PFP , H/h = 8)

H 1/2 1/4 1/8 1/16

F
E
T
I-
2

CE1/CE2 6/14 54/78 294/350 1350/1470

AE/AE+ME 8/12 48/72 224/336 960/1440

EIG 1/2/4/. . . /32/64 1/2/. . . /256/378 1/2/. . . /1024/1750 1/2/. . . /2048/4096

DWT1 36/18/10/6 208/104/52/26 960/480/240/120 4096/2048/1024/512

DWT2 35/18/9/5 207/104/52/26 959/480/240/120 4095/2048/1024

DFT1 2/4/8/. . . /32/64 2/4/. . . /256/378 2/4/. . . /1024/1734 2/4/. . . /2048/4096

DFT2 1/2/4/. . . /32/64 1/2/. . . /256/376 1/2/. . . /1024/1728 1/2/. . . /2048/4096

DCT1 2/4/8/. . . /32/64 2/4/. . . /256/378 2/4/. . . /1024/1738 2/4/. . . /2048/4096

DCT2 1/2/4/. . . /32/64 1/2/. . . /256/376 1/2/. . . /1024/1730 1/2/. . . /2048/4096

T
F
E
T
I-
2

CE1/CE2/CE3 6/14/16 54/78/84 294/350/364 1350/1470/1500

AE/AE+ME 8/12 48/72 224/336 960/1440

EIG 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1856 1/2/. . . /2048/4096

DWT1 52/26/14/8 240/120/60/30 1024/512/256/128 4224/2112/1056/528

DWT2 52/26/13/7 240/120/60/30 1024/512/256/128 4224/2112/1056/528

DFT1 2/4/8/. . . /64/92 2/4/. . . /256/432 2/4/. . . /1024/1854 2/4/. . . /2048/4096

DFT2 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1854 1/2/. . . /2048/4096

DCT1 2/4/8/. . . /64/92 2/4/. . . /256/432 2/4/. . . /1024/1854 2/4/. . . /2048/4096

DCT2 1/2/4/. . . /64/92 1/2/. . . /256/432 1/2/. . . /1024/1855 1/2/. . . /2048/4096

Table 3: Dimensions of the deflation subspaces

The numbers of performed iterations of (P)CG method with no, lumped and
Dirichlet preconditioners, and of the DCGmethod for each tested variant of deflation,
solving the system of equations obtained by (T)FETI-1, are depicted in Table 4.

146



H 1/2 1/4 1/8 1/16

FETI-1 (NO/LP/DP) 23/14/8 37/20/13 45/24/17 56/29/25

TFETI-1 (NO/LP/DP) 25/14/8 34/16/8 34/16/11 33/16/11

F
E
T
I-
2

CE1/CE2 18/15 22/20 25/24 26/26

AE/AE+ME 16/14 24/20 25/21 26/22

EIG 28/23/19/
16/12/7/0

46/46/47/32/27/
22/15/9/6/0

56/56/56/58/44/29/
27/22/15/10/6/0

72/70/70/70/62/52/
29/28/27/22/16/11/7

DWT1 25/21/13/9 53/36/19/11 67/49/27/15 89/61/34/16

DWT2 22/18/15/– 38/29/26/– 49/36/32/– 62/48/35/–

DFT1 27/26/19/
15/13/0

62/5954/2262/1079
/215/49/23/16/0

74/7186/–/8522/9267
/–/2285/148/46/23/5

95/–/–/–/–/–/–/
–/–/231/61/33

DFT2 28/1029/640
/57/24/17/0

58/5183/–/6069/5471
/3946/335/54/14/2

67/7443/7904/8719/9251/
9190/8404/–/1193/134/25/7

84/7788/9757/7437/9456/
9979/–/–/–/–/2799/308/33

DCT1 29/23/19/
13/8/0

59/80/102/66/
44/29/16/8/0

74/98/213/221/236/
238/116/50/25/13/4

93/140/231/242/238/280
/289/336/343/70/33/15

DCT2 27/34/32/
23/19/15/0

57/67/114/103/110
/75/49/30/19/2

66/85/148/148/156/155
/165/191/102/47/24/7

87/108/155/165/165/182/
198/211/231/261/169/69/30

T
F
E
T
I-
2

CE1/CE2/CE3 23/19/18 26/22/20 28/24/20 28/25/20

AE/AE+ME 22/21 30/27 31/28 31/29

EIG 25/24/22/19
/16/11/7/0

33/33/32/31/29/
24/17/12/8/0

34/34/33/33/33/32/
30/25/17/12/8/0

33/33/33/33/33/33/
33/32/30/25/18/13/8

DWT1 22/19/15/10 31/25/17/11 32/26/18/11 32/28/18/11

DWT2 22/19/17/– 29/26/25/– 31/28/27/– 31/29/27/–

DFT1 25/25/21/
19/16/13/0

33/34/33/33/
31/23/21/19/0

34/34/34/34/34/
34/33/24/22/20/2

34/34/34/34/34/34/
34/34/33/28/23/22

DFT2 25/24/23/22
/21/18/10/0

33/33/33/33/32/
29/29/27/16/0

34/34/34/34/34/34/
33/30/30/30/20/2

33/33/33/33/33/33/
33/33/33/30/30/30/25

DCT1 25/23/21/
18/12/7/0

33/33/33/32/
30/22/14/9/0

34/34/34/33/33/
33/32/25/15/10/2

34/33/34/34/34/34/
33/33/33/29/18/10

DCT2 25/24/23/21
/18/17/12/0

33/33/33/33/31/
28/25/24/18/0

34/34/34/34/33/33/
33/30/27/25/22/1

33/33/33/33/33/33/
33/33/33/31/29/26/22

Table 4: Number of performed iterations of the (P)CG and DCG methods

In numerical experiments the following variants of deflation were tested:

• CE1 (CE with displacement equality conditions between corner nodes on the bound-
ary of the domain not included in W ), CE2 (CE with conditions between corner
nodes on the domain boundary included), CE3 (only TFETI-2 – CE2 + Dirichlet
BCs assigned in corner nodes on the domain boundary),

• AE (with displacement components of no corner nodes on the interface included
into the computation of averages on the interface), AE+ME ((T)FETI-2 – with no
corner nodes of interface included into averages, solitary forces of contributions of
total gluing force concentrated into the corner nodes on the domain boundary in case
of FETI-2, inside the domain in case of TFETI-2, not included)

• EIG1 (deflation by a given number of eigenvectors of the system matrix A),

• DWT1 and DWT2 (4/3/2/1 levels of 2D DWT applied on A with and without the
modification of W with regard to solving 2D problem of elastictity),

147



• DFT1, DFT2 (deflation by first M vectors of discrete Fourier basis with and with-
out the modification of W with regard to solving 2D problem of elastictity),

• DCT1, DCT2 (deflation by first M vectors of discrete cosine basis with and without
the modification of W with regard to solving 2D problem of elastictity),

7. Conclusion

This paper provides experimental evidence of an effect of standard FETI-1 and
TFETI-1 preconditioners and various types of deflation resulting in FETI-2 and
TFETI-2 variants for a model 2D linear elasticity problem. This effect consider-
ing the numbers of iterations should always be taken into account with its costs.
A detailed analysis in parallel environment is work in progress.

It should be mentioned that the benchmark 2D plane strain linear elasticity
problem discretized by FEM on which the numerical experiments were performed
was well-conditioned and thus the effect of the deflation was not that significant.
If deflation were applied, for example, to a decomposed problem of linear elasticity
with plates or shells, or to a decomposed problem without dualization, the effect of
the deflation would be even more considerable. A more significant effect of deflation
could also appear in the case of nonconforming and irregular subdomains’ meshes
resulting in a worse conditioned system matrix.
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Abstract: The paper is concerned with spherical radial basis function (SRBF)
interpolation. We introduce particular SRBF interpolants employing several
different geodesic metrics and a single trend function. Interpolation on a sphere
is an important tool serving to processing data measured on the Earth’s sur-
face by satellites. Nevertheless, our model physical quantity is the magnetic
susceptibility of rock measured in different directions. We construct a general
SRBF formula and prove conditions sufficient for its existence. Particular for-
mulae with specified geodesic metrics, trend and SRBFs are then constructed
and tested on a series of magnetic susceptibility examples. The results show
that this interpolation is sufficiently robust in general.
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1. Introduction

In many geophysical applications there is a demand to compute an approximate
representation of data measured on the sphere. We introduce a radial basis func-
tion (RBF) or spherical radial basis function (SRBF) interpolant in a real Euclidean
space Rd for data measured at nodes on the (d− 1)-dimensional surface of the unit
sphere in Rd ([2], [10], [14]) in Section 2. Further we present sufficient conditions for
the existence of such an interpolation formula.

Physical quantities measured on a sphere have brought an increasing interest with
very advanced satellite technology of acquiring such data on the Earth surface. In
the paper, the model physical quantity, having extensive applications, is different.
It is concerned with the laboratory determined scalar physical data, the values of
magnetic susceptibility of rock measured in different directions.

We introduce the spherical data interpolation formula and give sufficient condi-
tions for its existence in Section 2. We describe the ways of approximating raw data
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starting from the primary statistical treatment, important for the choice of the trend
of the interpolation formula, in Section 3, see, e.g., [15]. We use a single trend in the
formula, the second order polynomial in three Cartesian variables, that follows from
these considerations and fits the data measured as well as possible.

Several geodesic metrics, functions necessary for the construction of spherical ra-
dial basis function interpolation, are considered in the paper, cf. [9], [10], [11]. We em-
ploy only one SRBF in the experiments presented, the multiquadric ψ(r) =

√
r2 + c2,

see Sections 4 and 5. Further RBFs often used can be found in [2], [10], [12] etc.
The choice of a grid for the measurements performed is an important part of

interpolation [1], [5], [6], [7]. An apparent drawback of the simplest grid equidistant
in the spherical coordinates ϕ and ϑ is considered in Section 7. In this section,
numerical experiments employ as input the exact data given by the formula for
trend, but perturbed randomly. The results given in Sections 6 and 7 show that the
interpolation considered is sufficiently reliable.

2. Spherical data interpolation

We start with the notation necessary for introducing spherical data interpolation.
Let d be the dimension of a real Euclidean space Rd. Then Sd−1 = {x∈Rd | ‖x‖= 1},
where the norm ‖·‖ is Euclidean, is the (d− 1)-dimensional surface of unit sphere in
the d-dimensional space Rd.

Further, a function σ(x, y) of two variables x, y ∈ Rd is called radial if there
exists a function τ(r), r ≥ 0, such that σ(x, y) = τ(r), where r ∈ R is usually the
Euclidean distance between x and y in case of non-spherical data.

Let N and M be integers, N > 0, M ≥ 0, N ≥ M , and X = {xj}Nj=1 be a set
of mutually distinct interpolation nodes xj = (xj1, xj2, . . . , xjd) on Sd−1. The real
spherical interpolant v for x ∈ Sd−1 is constructed as

v(x) =
N∑
j=1

ajψ(g(x, xj)) +
M∑
k=1

bkpk(x), (1)

where aj, j = 1, . . . , N, and bk, k = 1, . . . ,M, are real coefficients to be found. If
M = 0, the second sum is empty.

In the interpolant, g is a nonnegative function called the geodesic metric, usually
g : Sd−1 × Sd−1 → [0, 1] is based on the angle between the radius vectors corre-
sponding to the two arguments of g, see Section 3. Examples are given in Sec-
tion 4. Further, ψ : [0, 1] → R is a continuous real function, called the radial basis
function (RBF) or spherical radial basis function (SRBF), and pk is a polynomial
from Πt(Rd), where Πt(Rd) is the set of all polynomials (trends) p : Rd → R with
real coefficients and of total degree less than or equal to some nonnegative integer t.

Let us formulate the interpolation problem to be solved. Given a continuous
real target function f : Sd−1 → R, find the spherical interpolant, i.e., a continuous
function v : Sd−1 → R that satisfies the interpolation conditions

v(xi) = f(xi), i = 1, . . . , N, (2)
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where f(xi) is the value measured at the node xi. Multiple measurements in a sin-
gle direction xi with different results lead to a singular linear algebraic system for
coefficients of the interpolation formula.

We confine ourselves only to real-valued functions and real data to make the
exposition clearer. Substitute xi, i = 1, . . . , N , for x in the formula (1) for v to get

v(xi) =
N∑
j=1

ajψ(g(xi, xj)) +
M∑
k=1

bkpk(xi), i = 1, . . . , N,

and replace the left hand parts v(xi) of the interpolation conditions (2) with these
expressions.

In the matrix notation, introduce an N × N symmetric square matrix Ψ with
the entries ψij = ψ(g(xi, xj)), i, j = 1, . . . , N , and an N ×M matrix P with the
entries pjk = pk(xj), j = 1, . . . , N, k = 1, . . . ,M . Let a ∈ RN , b ∈ RM , and f ∈ RN

be the vectors of the unknowns and the vector of the right hand parts f(xi) of the
interpolation conditions (2).

Note that if M > 0 then we have only N interpolation conditions for N+M inter-
polation coefficients aj and bk of the interpolant. Thus we can impose M additional
linear constraints for the individual trends pk,

N∑
j=1

ajpk(xj) =
N∑
j=1

ajpjk = 0, k = 1, . . . ,M.

Now the system of linear algebraic equations to be solved for the unknown vec-
tors a and b reads

Q

[
a
b

]
=

[
f
0

]
, where Q =

[
Ψ P
PT 0

]
(3)

is a symmetric (N +M)× (N +M) matrix of the system.

Theorem 1. Let the N×N principal submatrix Ψ of the (N+M)×(N+M) matrix Q
be positive definite and let rank P = M . Then the matrix Q is nonsingular.

Proof. The proof follows from Theorem 1 of [13].

In Theorem 1, we use the hypothesis that the matrix Ψ is positive definite and
rank P = M . However, in Micchelli [12] and many other sources, the condition that
the spherical basis function ψ is conditionally (strictly) positive definite is employed
to prove that the matrix Q is nonsingular.

A problem similar to data interpolation is data smoothing (fitting) but we are not
concerned with that problem in this contribution.
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3. Model problem

For a model problem, we have chosen the laboratory determination of raw sus-
ceptibility data, see, e.g., [8], [15]. The 3D rock sample rotates in magnetic field and
the scalar data items si measured in a set of selected directions ui are of the form

si = uT
i Kui + ei, (4)

where ui is a unit vector in Cartesian coordinates in R3, whose initial point is at the
origin and whose end point is on the unit sphere at xi. K is a tensor, and ei are
deviations from the theoretical tensor model. Assuming the equation (4), we carry
out linear regression and find an estimation of the tensor K. Then an appropriate
rotation of the coordinate system can make the tensor K diagonal with the principal
susceptibilities K1, K2, K3 on the diagonal.

We call the graphical representation of the directional susceptibilities the lemnis-
cate surface, see Figure 1. Two-dimensional surfaces in R3 are depicted as endpoints
of the corresponding vectors siui, as usual.

Figure 1: Model problem. Lemniscate surface v obtained by the interpolation
formula (10) (with interpolation conditions (2)) employing the theoretical values
f(xi) = si given by (4) with principal susceptibilities K1 = 2.00, K2 = 1.00,
K3 = 0.10, and ei = 0.

The magnitude of directional susceptibility in the ith direction zi is given by
the distance between the origin and the surface measured along the vector zi. The
polynomial s(z) = zTKz determined by the tensor K is taken for the only trend in
our further considerations, see Section 5.

4. Geodesic metric

Employing a RBF in the interpolation formula, we are supposed to define the
distance between two nodes (i.e., between two unit vectors) x and y on the unit
sphere Sd−1. The angle α of these two vectors is given as

cosα = x · y,
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where x · y is the inner product of two vectors from Rd. Since cosα = cos(2π − α)
we can choose for computation either the angle α or its complement to 2π, i.e.
2π − α. Only few geodesic metrics g are used in practice. They usually satisfy
g : Sd−1 × Sd−1 → [0, 1].

The simplest geodesic metric is the angle α itself,

g0(x, y) = α/(2π) = cos−1(x · y)/(2π). (5)

Further two geodesic metrics, g1 and g2, are based on cosα, α ∈ [0, 2π]. We put

g1(x, y) =
√

1− cos2 α = | sinα|. (6)

Central symmetry of the data measured is expected when we apply the geodesic
metric g1. Every unit vector x is considered as a part of an axis coming through the
center of the sphere and from its two possible directions no direction is prescribed.
Our quantity measured (magnetic susceptibility of rock) is just of this kind. If the
angle α of two vectors x and y equals π (i.e., y = −x) then the values measured on
the sphere at x and y should be identical since the nodes x and −x of interpolation
are not distinguished.

Therefore, in what follows, when using g1, we assume that the elements xj of
the set X are mutually distinct and, moreover, that it is xi 6= −xj for every i, j =
1, . . . , N . The geodesic metric g1 is periodic in α with the period π, and it holds
g1(x, y) = 0 for α = 0, π, 2π.

The next geodesic metric considered is

g2(x, y) =
√

1
2
(1− cosα). (7)

No symmetry of data measured is supposed when we employ the geodesic metric g2.
Apparently, g2 is periodic in α with the period 2π, and it holds g2(x, y) = 0 for
α = 0, 2π.

5. A particular trend function

Let us turn back to our 3D problem introduced in Sec. 3. We take the second
degree polynomial corresponding to (4), i.e.

s(z) = K1z
2
1 +K2z

2
2 +K3z

2
3 , z = (z1, z2, z3) ∈ S2, (8)

where K1, K2, K3 are known positive constants, for the only trend, i.e. M = 1.
Notice that the single argument of the SRBF function ψ is from the interval [0, 1]

due to the geodesic metric, while the argument z of the trend s is from S2.
The advantage of the formula proposed is apparent in cases when we know that

the physical field measured does not principally differ from the ideal field whose values
can be computed from some explicit formula, in our case from (4). Description of
the ideal field is then fitted by the trend part of the formula and the corrections
resulting from the first, spherical part of the formula are only small.
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6. The SRBF formula employed

We put d = 3 in our model problem, then S2 is the usual two-dimensional unit
sphere surface in the three-dimensional Euclidean space R3. Choose a fixed positive
integer N and put M = 1.

We take the multiquadric

ψ(r) =
√
r2 + c2 (9)

for the spherical radial basis function, where r ∈ [0, 1] (the range of the geodesic
function) and c is a positive shape parameter.

Apparently, the trend s given by (8) belongs to Π2(R3), which is the set of all
polynomials p : R3 → R of three variables with real coefficients and of total degree
less then or equal to 2.

Consider the interpolation formula (1) in the form

v(x) =
N∑
j=1

ajψ(g(x, xj)) + bs(x), (10)

where x, xj ∈ S2, i.e., in the interpolation system (3), P is a single column N -vector
and b and 0 are scalars.

We add a single constraint

N∑
j=1

ajs(xj) = 0

to the interpolation conditions.

The following theorem is a particular case of Theorem 1 that covers our model
problem.

Theorem 2. Let the linear algebraic system (3) correspond to the interpolation for-
mula (10). Let the block P in the block matrix Q have rank 1. Then the interpolation
problem has the unique solution aj, j = 1, . . . , N , and b.

Proof. It is known that the principal submatrix Ψ of the block matrix Q of the
linear algebraic system (3) is positive definite when ψ is an inverse multiquadric
(Micchelli [12]). On the assumption that rank P = 1, the matrix Q is nonsingular
by Theorem 1 and the system has the unique solution aj, j = 1, . . . , N , and b.

Remark 1. P is a single column N -vector, PT = (s(x1), . . . , s(xN)). The assump-
tion of Theorem 2 that rank P = 1 is apparently fulfilled if at least one of the entries
pk = s(xk) is nonzero.
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Figure 2: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.9, 1.1]
resulting in the corresponding ei. The geodesic metric g0, N = 74, c2 = 0.25.

7. Computational experiments

We have accomplished several series of computational experiments with the SRBF
interpolation of the theoretical as well as perturbed theoretical lemniscate surfaces
in the model problem with d = 3, where S2 is the usual two-dimensional unit sphere
surface in the three-dimensional Euclidean space. We have employed the SRBF
interpolation formula (10) and different grids, geodesic metrics g0, g1, g2, and several
SRBF functions. See Figures 2, 3, 4.

The simplest grid used on a unit sphere is the grid equidistant in both the spher-
ical coordinates ϕ and ϑ. The drawback of this grid is the fact that its nodes are
dense in the vicinity of poles and sparse around the equator. For g1, the interpolation
nodes should satisfy the condition xj 6= ±xi mentioned above. The results presented
in this paper have been computed in such grids.

Grids on a unit sphere are often used also for numerical integration. For in-
terpolation, we have tried three such systems of grids: Bažant grids [1], Fibonacci
grids [4], [6], and triangular grids stemming from an icosahedron [7], but we have
found that they bring no significant advantage. A general treatment of data sampling
on a unit sphere is provided in [5].

In literature (see, e.g., [2], [10], [12]), one can find several SRBFs ψ known to pro-
vide a positive definite matrix Ψ of (3). For example, the (direct) multiquadric (9),
inverse multiquadric 1/

√
r2 + c2, Gaussian function exp(−cr2) or thin plate spline [3].

The results presented in this contribution have been computed with the direct mul-
tiquadric ψ with a positive parameter c. The results may strongly depend on the
constant c.

The resulting linear algebraic system (3) for the coefficients of the formula can
be easily solved by the LU decomposition method for N of order tens. For higher N ,
the system may be very ill-conditioned and special solution methods should be used.
We apply, e.g., the Gauss-Jordan method.
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Figure 3: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.9, 1.1]
resulting in the corresponding ei. The geodesic metric g1, symmetric grid and data,
N = 40, c2 = 0.25.

Figure 4: Lemniscate surface with K1 = 2.00, K2 = 1.00, K3 = 0.10. The exact
values given by (4) were multiplied by a random factor σ from the range [0.999, 1.001]
resulting in the corresponding ei. The geodesic metric g2, N = 74, c2 = 0.25.

8. Conclusions

We have carried out numerical tests with the interpolation formula (10), three
geodesic metrics (5), (6) and (7), and SRBF (9). The formula performs efficiently and
the results exhibit dependence on the parameter c. Further research shall provide
a comparison of results obtained using various other SRBFs, e.g. thin plate splines,
inverse multiquadrics, or the Gaussian function.
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Abstract: This study addresses the problem of the flow around circular cylin-
ders with mixed convection. The focus is on suppressing the vortex-induced
vibration (VIV) of the cylinder through heating. The problem is mathemat-
ically described using the arbitrary Lagrangian-Eulerian (ALE) method and
Boussinesq approximation for simulating fluid flow and heat transfer. The
fluid flow is modeled via incompressible Navier-Stokes equations in the ALE
formulation with source term, which represent the density variation due to the
change of temperature. The temperature is driven by the additional governing
transport equation. The equations are numerically discretized by the finite
element (FEM) method, where for the velocity-pressure couple the Taylor-
Hood (TH) finite element is used and the temperature is approximated by the
quadratic elements. The proposed solver is tested on benchmark problems.

Keywords: finite element method, Taylor-Hood element, arbitrary Lagran-
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1. Introduction

The problem of flow around circular cylinders with mixed convection is of con-
siderable importance in various engineering applications, such as flow in tubes, heat
exchangers, nuclear reactor fuel rods, chimney stacks, cooling towers, etc. These
applications involve critical engineering design parameters related to fluid flow, heat
transfer, and vibration, which must be carefully considered, see [4].

This paper focuses on the suppression of vortex-induced vibration (VIV) of the
cylinder by its heating. Over the years, numerous numerical and experimental stud-
ies have focused on investigating homogeneous or uniform flow around a circular
cylinder that is movable in a vertical direction (see, e.g., [1,3]). In these studies, flow
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behavior is primarily characterized by the Reynolds number (Re), and structure mo-
tion is always non-dimensional, where its stiffness is characterized by the reduced
velocity Ur. The response of the system and its resonance is dependent only on
these two variables, see [1]. However, if one considers the buoyancy forces, there is
another non-dimensional parameter, called the Grashof number (Gr), which can be
used for controlling the fluid flow and the structural response. For example, in [10]
it is shown that for Re = 100 and for the Gr ≥ 1500 the vortex shedding is stopped
and the flow becomes steady state. An increase in the Gr number also leads to an
increase in the drag coefficient. Similar results were found in [11] where for Re = 200
the critical value Gr = 12000 was determined. The results of the heated movable
cylinder can be found, e.g., in [14], where the critical Gr number was defined to be
dependent also on the reduced velocity.

This paper focuses on a numerical simulation of the VIV problems of the cylin-
der leading to suppression of the vibrations, a description of such strategies can
be found in [4]. A simplified model of incompressible fluid with buoyancy forces
is considered, however, for such a model still several numerical challenges, such as
managing the incompressibility constraint, nonlinear convective terms and coupling
between the additional transport equation of the temperature with the momentum
equations need to be addressed (see, e.g., [10]). The model needs to treat the time-
dependent computational fluid domain, which is usually handled using the arbitrary
Lagrangian-Eulerian (ALE) method, see e.g., [13]. To describe the fluid flow influ-
enced by the heat transfer, the Boussinesq approximation is used. The mathematical
model consists of the incompressible Navier-Stokes equations with a right-hand side
term depending on the temperature. The temperature is described by an additional
transport equation. For the approximation of the system of incompressible Navier-
Stokes equations in the ALE formulation, the Taylor-Hood (TH) finite element is
used. This choice of the velocity-pressure pair satisfies the Babuška-Brezzi (BB) inf-
sup condition, which guarantees the stability of the numerical scheme, see [8]. The
temperature is approximated by continuous piecewise quadratic functions.

The proposed method is tested on two benchmark problems. The first involves
the flow around a fixed heated cylinder, where the critical Grashof number and mean
drag coefficient are compared with the data from [10]. In the second test case, the
suppression of vibration of a moving cylinder is addressed by its heating, the response
is compared with the findings of [14].

2. Governing equations

In this section, the mathematical model of the fluid flow around the heated mov-
ing cylinder is given, where the density changes due to the temperature described
by the Boussinesq approximation. The model consists of the incompressible Navier-
Stokes equations in the ALE formulation coupled with the convection-diffusion equa-
tion for the temperature.

Let Ωt ⊂ R2 be a bounded computational time-dependent fluid domain with
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a continuous Lipschitz boundary, which is composed of three disjoint segments:
∂Ω = ΓD ∪ ΓO ∪ ΓWt . The domain Ωt is assumed to be polygonal, and completely
filled with fluid at any time t ∈ (0, T∞). The movability of the domain is treated
via the Arbitrary Lagrangian-Eulerian (ALE) formulation. The ALE method uses
a mapping At that transforms the reference domain Ω0 on the current domain Ωt, i.e.,

At : Ωref → Ωt, X 7→ x(X, t) = At(X), x ∈ Ωref, t ∈ (0, T∞]),

moreover transforms the reference interface ΓW0 on the current interface ΓWt based
on the movement of the cylinder, while the other boundaries remain stationary. For
further details, see [13].

For computation, the non-dimensional Navier-Stokes (NS) equations for incom-
pressible flow and the thermal equation in the ALE formulation are used. Firstly, all
lengths are characterized by the cylinder diameter D, the flow velocities u = (u1, u2)
are scaled by the free stream velocity Uref, the time is scaled by the factor D/Uref, and
the kinematic pressure is scaled by ρU2

ref, where ρ is the fluid density. In addition, the
non-dimensional temperature is given by θ = (T−Tref)/(Ts−Tref), where T represents
fluid temperature, Tref is the temperature of the free stream, and Ts is the temper-
ature of the cylinder. For simplicity, in the rest of the paper, all of the quantities
are dimensionless. The nondimensional form of the NS equations with the trans-
port temperature equation read: Find the velocity u(x, t) : Ωt → R2, the pressure
p(x, t) : Ωt → R, and the temperature θ(x, t) : Ωt → R which satisfy

DA

Dt
u + [(u−w) ·∇]u− 1

Re
∆u + ∇p =

Gr

Re2
θ in Ωt, t ∈ (0, T∞],

∇ · u = 0 in Ωt, t ∈ (0, T∞],

DA

Dt
θ + [(u−w) ·∇]θ − 1

RePr
∆θ = 0 in Ωt, t ∈ (0, T∞],

(1)

where DA

Dt
denotes the ALE derivative, and w = ∂At/∂t represents the domain veloc-

ity, see [2,13]. The Re, Pr, and Gr are the Reynolds, Prandtl and Grashof numbers
respectively, given as Re = UrefD/ν, Pr = ν/κ, and Gr = gβ∆TD3/ν2, where ν is
the kinematic viscosity, κ is the thermal diffusivity, ∆T is the temperature difference
(∆T = Ts − Tref), β means the thermal expansion coefficient and g is the gravita-
tional acceleration (in this paper acting in the horizontal direction), see [14]. This
approximation of the flow problem around the heated cylinder is valid for approxi-
mately β∆T ≤ 0.01, see [10].

To close problem (1), the following conditions are added: initial condition

u(x, 0) = u0, θ(x, 0) = θ0 in Ω0, (2)
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and the boundary conditions

u(x, t) = g(x, t), θ(x, t) = q(x, t) on ΓD × (0, T∞], (3a)

u(x, t) = w(x, t), θ(x, t) = q(x, t) on ΓWt , t ∈ (0, T∞], (3b)

∂θ

∂n
= 0 on ΓO × (0, T∞], (3c)

−(p− pref)n +
1

Re

∂u

∂n
= 0 on ΓO × (0, T∞], (3d)

where n represents the unit outward normal vector to ∂Ωt and pref represents a refer-
ence pressure value at the outlet. Here, Eq. (3a) is the no-slip condition, (3b) reflects
the assumption that the fluid remains attached to the cylinder, (3c) is the Neumann
condition, and (3d) is the so-called do-nothing condition, see [6].

2.1. Motion of the cylinder

In this paper, a simplified model can be used as the cylinder is movable only in
the vertical direction. Therefore, the ordinary differential equation (ODE) for the
displacement Y , its velocity Ẏ and acceleration Ÿ in non-dimensional form are

Ÿ +

(
4πξ

Ur

)
Ẏ +

(
4π2

U2
r

)
Y =

Cl
2M∗ , (4)

where ξ symbolizes the structural damping ratio, Ur = U∞
fnD

is the reduced velocity

of the cylinder (with fn representing the natural frequency of the cylinder), M∗

indicates for the reduced mass of the rigid cylinder (M∗ = m
ρD2 ), and Cl = L

1/2ρU2
∞A

is the lift coefficient (here L represents the lift force), see [1, 14].

3. Discretization of the fluid flow problem

In order to discretize problem (1) by the finite element method (FEM), the weak
formulation has to be introduced. First, a constant time step ∆t > 0 is taken, and
the time interval (0, T∞) is equidistantly divided into time intervals (tn, tn+1) with
tn = n∆t. Further, the velocity, pressure and the temperature are approximated at
time step tn ∈ (0, T∞] by un(x) ≈ u(x, tn) for x ∈ Ωtn , p

n(x) ≈ p(x, tn) for x ∈ Ωtn ,
and θn(x) ≈ θ(x, tn) for x ∈ Ωtn . The velocity of the domain at the instant tn+1

is approximated by wn+1(x) ≈ w(x, tn+1) for x ∈ Ωtn+1 and the ALE derivative
is approximated at fixed time instance tn+1 by the second-order two-step backward
difference formula (BDF2). Hence, the implicit scheme is given

3un+1 − 4ũn + ũn−1

2∆t
+ ((un+1 −wn+1) ·∇)un+1 − 1

Re
∆un+1 + ∇pn+1 =

Gr

Re2
θ,

∇ · un+1 = 0,

3θn+1 − 4θ̃n + θ̃n−1

2∆t
+ ((un+1 −wn+1) ·∇)θn+1 − 1

RePr
∆θn+1 = 0,

where ũi and θ̃i denotes the transformation of ui and θi from Ωi onto Ωn+1, i.e.,
ũi = ui ◦ Ati ◦ A−1

tn+1
.
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3.1. Spatial discretization by the FEM

In this section, the FEM discretization of the semi-discrete problem (5) is intro-
duced in the standard way. Firstly, a weak formulation is provided. Let us assume
the fixed time instance tn+1, and present a simplified notation: u = un+1, w = wn+1,
p = pn+1, and Ω = Ωtn+1 .

Furthermore, the velocity test space V , the pressure test space Q and the tem-
perature test space T are defined as

V =
{
ϕ ∈H1(Ω) ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
, Q = L2(Ω),

T =
{
ϕ ∈ H1(Ω) ϕ(x) = 0 ∀x ∈ ΓD ∪ ΓW

}
,

where H1(Ω) = [H1(Ω)]2 is the vector Sobolev space and L2(Ω) is the Lebesgue
space, see [9].

Using some mathematical operation and proposing the notation of the scalar
product (u,v)Ω =

∫
Ω
u · v dx in L2(Ω) and of the trilinear form c(u,v,w) =∫

Ω
[(u · ∇)v] ·w dx, the weak formulation reads: Find U = (u, p.θ) ∈ V ×Q × T

such that the equation

a (u, U, V ) + aθ (u, U, V ) = F (V ) + Fθ(V ), (5)

holds for any test function V = (v, q, ζ) ∈ V ×Q ×T , where

a (U, V ) =
3

2∆t
(u,v)Ω +

1

Re
(∇u,∇v)Ω + c(u−w,u,v)− (p,∇ · v)Ω − (∇ · u, q)Ω,

F (V ) =
1

2∆t
(4ũn − ũn−1,v)Ω +

Gr

Re2
(θ,v)Ω, (6)

and

aθ (u, θ, ζ) =
3

2∆t
(θ, ζ)Ω +

1

RePr
(∇θ,∇ζ)Ω + ((u · ∇)θ, ζ)Ω,

Fθ(ζ) =
1

2∆t
(4θ̃n − θ̃n−1, ζ)Ω.

(7)

For a more detailed description see [8].
In addition, the admissible triangulation τh of the domain Ω is considered (see [5])

and in this triangulation, the following finite element (FE) subspaces are used:
Vh ⊂ V as the velocity subspace, Qh ⊂ Q as the pressure subspace, and Th ⊂ T as
the temperature subspace. Generally, finite element subspaces consist of piecewise
polynomial functions. In this paper, the velocity and the pressure are discretized by
the so-called Taylor-Hood element which leads to the following function spaces

Vh =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P2(K),∀K ∈ τh)

}
∩ V , (8)

Qh =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P1(K),∀K ∈ τh)

}
. (9)
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The temperature is discretized by the piecewise quadratic functions

Th =
{
ϕ ∈ C(Ω) (ϕ

∣∣
K
∈ P2(K),∀K ∈ τh)

}
∩T . (10)

Then, the discrete problem reads: Find Uh = (uh, ph, θh) ∈ Vh ×Qh ×Th such that
the equations

ah (Uh, Vh) + aθ (uh, θh, ζh) = F (Vh, θh) + Fθh(ζh) (11)

hold for any test function Vh = (vh, qh, ζh) ∈ Vh×Qh×Th and satisfies the boundary
conditions (3a)–(3c).

4. Numerical simulations

In this section, the results of numerical simulations are discussed, such as the
problem of flow around the fixed heated cylinder and flow around the heated cylin-
der with one degree of freedom in the cross direction. The domain of the problem
is shown in Figure 1. The fluid flow around the heated cylinder is modeled us-
ing Eqs. (1), which are incompressible Navier-Stokes equations, incorporating the
Boussinesq approximation to account for temperature variations. For the fixed case
the ΓWt remains stationary while in the problem with vibrations, it can move in the
vertical direction.

Γ
D

Γ
40D

D

Γ

80D

O
W

t

Figure 1: Domain of the flow around the cylinder.

4.1. Flow around the heated cylinder

The first test case is the flow around the fixed cylinder. The boundary conditions
include the Dirichlet boundary conditions on ΓD. The ΓWt incorporates the movable
surface (for a simple case without moving, the surface is fixed). At the outlet ΓO,
the so-called do-nothing condition is used for the velocity and pressure (see [12]).
The temperature is subject to Dirichlet boundary conditions in the free stream ΓD,1
and at the ΓWt , while a Neumann boundary condition is applied at the outlet ΓO.
The domain size was selected based on [11], and the size of the mesh was limited
by the solver, which the UMFPACK library provides, and it performs efficiently up
to 200000 DoFs.

Calculations were performed for various scenarios involving different Grashof
numbers, with Reynolds numbers Re = 100 and Re = 200. The critical Gr number
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Figure 2: Magnitude of the veloc-
ity (||u||∞) for the Gr = 1000.

Figure 3: Temperature field θ for
the Gr = 1000.

Figure 4: Magnitude of the veloc-
ity (||u||∞) for the Gr = 1500.

Figure 5: Temperature field θ for
the Gr = 1500.

(the lowest number where the flow becomes steady) is compared with [10] and the
drag coefficients for various scenarios are also compared. Figures 2–5 show the results
for four cases with Re = 100. As the Grashof number increases, the flow gradually
stabilizes until it reaches a critical Grashof number (Gr = 1500), after which the
flow is nearly steady. This corresponds to [10]. Similar trends were observed for
Re = 200, although the critical Grashof number is higher (Gr = 15000), probably
due to the insufficient quality of the mesh. Despite this, the mean drag coefficient
for both cases is aligned well with the reference data [10,11], see Figure 6.

4.2. Flow around the movable heated cylinder

The initial state of the domain, denoted as Ωt, is in Figure 1 with heated cylin-
der. The boundary conditions are similar to the previous problem, and due to the
movement of the cylinder, the Dirichlet boundary condition is u = w. Its position
is obtained by solving the problem (4) using the 4-th order Runge-Kutta method.
The coupling procedure between the cylinder and the fluid flow is performed using
a strong coupling algorithm, which is well described in [7]. The mesh movement is
realized by the pseudo-elastic approach, which is described, e.g., in [7].

The flow problem around the cylinder is characterized by the Reynolds number
Re = 150, aligned with the reference data from [14]. The model of a movable cylinder
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Figure 6: Drag coefficient for different Gr numbers for Re = 100 a), and for Re = 200
b), compared to the reference data from [10,11].

Figure 7: Displacement Y/D in dependent of time for the case Ur = 8 and Re = 150.

without heating is well described in [1]. A vortex street forms in the wake of the cylin-
der, leading to oscillations in aerodynamic forces, which in turn induce the vibration
of the cylinder. The interval in which the resonance occurs is Ur ∈ [4, 8]. The highest
amplitude is for Ur = 4 and then the amplitude decreases with increasing Ur, see [1].

Our goal is to suppress the vibration by heating and stabilizing the flow. In Fig-
ure 7, the displacement Y is given for Ur = 8, with zero damping ξ = 0, and M∗ = 2.

It can be observed, that as the Gr is increased (we add more and more heating),
the vortex shedding is stabilized until we reach the Gr = 6750 and we reach an
almost steady state. This result corresponds to [14].

5. Conclusion

In this paper, the problem of the interaction between incompressible flow and
a heated cylinder with one degree of freedom is analyzed using numerical simulations.
The main goal was to suppress the flow-induced vibrations (VIV) by its heating.
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The problem was mathematically described as the incompressible fluid which is
approximated by the incompressible Navier-Stokes (NS) equations, where to take into
account the density dependence on the temperature, the Boussinesq approximation
was used. As a result, a source term depending on the temperature is included in the
NS equations, where the temperature is modeled by an additional transport equation.
For time discretization the backward-difference formula of second order (BDF2) is
used, whereas for space discretization the finite element method (FEM) is utilized.
The velocity and pressure are discretized by the Taylor-Hood (TH) element, while
the temperature is discretized by the piecewise quadratic functions. The numeri-
cal results of the developed in-house solver are presented and compared with the
reference data of [10,14].

For the first case of the flow around the fixed cylinder, it was confirmed that
the stability of the flow is dependent in addition to the Reynolds number (Re) also
on the Grashof number (Gr). It was observed that for Re = 100 the critical Gr
number is Gr = 1500, which is in agreement with [10]. For the case, Re = 200, the
obtained critical Gr number (Gr = 15000) is larger than the value Gr = 12000 found
in [11]. This is probably due to the use of a not sufficiently refined mesh, where the
applied solver is limited by the number of unknowns from the UMFPACK library. In
addition, the dependence of the drag coefficient on the Grashof number was compared
with the reference data from [10, 11]. It was shown that with an increase in the Gr
number, the drag coefficient also increases. Our simulations slightly overestimated
the drag for Re = 200, it might again be attributed to insufficient quality of the mesh.

The second case was the flow around a vibrating cylinder, whose vibrations are
described using one degree of freedom (vertical displacement). The structural move-
ment is characterized by the reduced velocity Ur. It is shown that for one case of
reduced velocity (i.e., Ur = 8) the amplitude of the response is lowered with an
increase of the Gr number. Such a decrease of vibrations continues with further
increase up to the critical Gr number Gr = 6750, for which an almost steady state
is obtained. This is also in agreement with the findings in [14].

It was shown that the presented results of the developed in-house numerical solver
agree with the reference data. Further, the numerical results showed that the heating
of the cylinder can lead to the suppression of the VIV of the cylinder. The main
limitation of the presented solver is that it can solve only small systems due to the
UMFPACK library used as a solver. This problem can be addressed, e.g., by domain
decomposition.

Acknowledgements

The authors acknowledge the support by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS SGS22/148/OHK2/3T/12, and grant No. SGS
SGS24/120/OHK2/3T/12. Karel Vacek has also been supported by the Czech Science
Foundation (GAČR) project 22-01591S. The Institute of Mathematics of the CAS is sup-
ported by RVO:67985840.

167



References

[1] Ahn, H. T. and Kallinderis, Y.: Strongly coupled flow-structure interactions with
a geometrically conservative ALE scheme on general hybrid meshes. J. Comput. Phys.
219 (2006), 671–696.

[2] Alsabery, A., Sheremet, M., Ghalambaz, M., Chamkha, A., and Hashim, I.: Fluid-
structure interaction in natural convection heat transfer in an oblique cavity with
a flexible oscillating fin and partial heating. Applied Thermal Engineering 145 (2018),
80–97.

[3] Bao, Y., Huang, C., Zhou, D., Tu, J., and Han, Z.: Two-degree-of-freedom flow-
induced vibrations on isolated and tandem cylinders with varying natural frequency
ratios. J. Fluids Struct. 35 (2012), 50–75.

[4] Chen, W. L., Huang, Y., Chen, C., Yu, H., and Gao, D.: Review of active control of
circular cylinder flow. Ocean Engineering 258 (2022), 111 840.

[5] Ciarlet, P. G.: The finite element method for elliptic problems. Society for Industrial
and Applied Mathematics, 2002.

[6] Feistauer, M.: Mathematical methods in fluid dynamics. 67, Chapman and Hall/CRC,
1993.
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Abstract: Human phonation process represents an interesting and complex
problem of fluid-structure-acoustic interaction, where the deformation of the
vocal folds (elastic body) are interplaying with the fluid flow (air stream) and
the acoustics. Due to its high complexity, two simplified mathematical mod-
els are described – the fluid-structure interaction (FSI) problem describing the
self-induced vibrations of the vocal folds, and the fluid-structure-acoustic inter-
action (FSAI) problem, which also involves aeroacoustic phenomena. The FSI
model is based on the incompressible Navier-Stokes equations in the ALE for-
mulation coupled with the linear elasticity model. Both the fluid and structural
models are approximated using finite element methods, and the influence of
different inlet boundary conditions is discussed in detail. For the FSAI model,
an aeroacoustic hybrid approach is used, incorporating the Lighthill analogy or
the perturbed convective wave equation. The acoustic results strongly depend
on the proper choice of the computational acoustic domain (i.e. vocal tract
model). Further, the spatial and frequency distributions of sound sources com-
puted from the FSI solution are compared for both used approaches. The final
frequency spectra of acoustic pressure at the mouth position are also analyzed
for both approaches.

Keywords: human phonation, flow-induced vibrations, Navier-Stokes equa-
tions, aeroacoustic analogy, flutter instability, finite element method.

MSC: 65M60, 74F10, 76Q05.

1. Introduction

The basic sound of human phonation is created by an airstream (fluid flow) pour-
ing through a channel constricted by vibrating elastic vocal folds (VFs), naturally

DOI: 10.21136/panm.2024.16
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leading to fluid-structure interaction (FSI) problem, see [17]. Moreover, both the
involved physical fields also interact with the acoustic field and we speak in gen-
eral about fluid-structure-acoustic interaction (FSAI) problem, [7, 15], see Figure 1.
The acoustic interaction occurs in two primary ways: the resonant frequencies of
the acoustic domain dominate the output signal as other frequencies are less dis-
tinct, [17, 14], and acoustic waves can influence VF vibration patterns (as the major
sound source mechanism). This can occur particularly under high sound pressure
levels (SPL), as observed in loud singing [23], or during phonation into a length-
adjusted tube used in voice therapy [4].

In this paper the modelling of human phonation during the normal speech is con-
sidered, where the source-filter theory ([17, 14]) can be utilized (due to low acous-
tic SPL) neglecting any acoustic influence on the VF vibration. This allows us to
decouple the acoustic problem from the FSI problem and to use the hybrid approach
of aeroacoustic analogies, see Figure 1 on the right. The acoustic problem, treated as
a post-processing task after the FSI simulation, can be solved with a different solver,
offering many advantages, see [7]. This simplified FSAI model, [13], is the primary
focus here.

=⇒

Figure 1: Dependence of physical fields in FSAI problem and its possible simplifica-
tion, where the acoustic influence on the FSI problem is neglected.

Another mechanism of sound production, aside from the aeroacoustic one, is the
vibrations of VFs, see e.g. [7]. This contribution is often modelled as a simplified
vibro-acoustic problem, neglecting the influence of the acoustic field on VF vibration,
see Fig. 1 right. This problem is sometimes overlooked due to anticipated prominence
of aerodynamically produced sound, [13], for a more detailed discussion see e.g. [23].

The typical healthy VF vibration regime is characterized by flutter instability,
making modelling and numerical approaches highly demanding, [17], [15]. During
the flutter regime the structural displacements exponentially grow until – for the
case of healthy phonation – the both VFs reach contact and impact each other.
Mathematical modelling of contact problems is challenging on its own and highly
demanding to be included in the already complex FSAI problem [13]. Although
some promising results emerged, e.g. a low-order model comprising a three-mass
system coupled with 1D Euler equations and Hertz contact theory applied, [5], or
more recently a simplified contact treatment in the continuum settings [20], the
contact modelling is completely omitted here. On the other hand, the novelty of the

170



present study lies in the detailed analysis of the energy balance between the flow and
the structure based on the pressure-gap curve [4], as well as in the improved acoustic
results compared to those previously published in [18], where the final results were
affected by the improper implementation of a perfectly matched layer (PML).

The FSI problem is modelled here by a linear elasticity model for the vocal
folds and the incompressible Navier-Stokes equations for the air flow. The arbi-
trary Lagrangian-Eulerian (ALE) method addresses the time-dependent fluid do-
main, see [2], offering simplicity in description and implementation, [16], but re-
quiring remeshing or additional modifications for topological changes, such as the
omitted contact phenomenon, [8, 20]. The numerical discretization by the finite ele-
ment method (FEM) is performed and the stabilization of the convection-dominated
airflow is applied. Finally, two aeroacoustic approaches are presented: the classical
Lighthill (LH) analogy and the perturbed convective wave equation (PCWE) based
on a careful separation of acoustic from other fluid components, [1, 7]. The analysis
of computed sound sources is important for validating the computation procedure
and identifying the origin and location of the generated sound, [13]. Subsequently,
the time propagation problem is solved in the selected acoustic domain representing
vocal tract geometry, which can strongly influence acoustic results, cf. [23] and [13].
The PML technique models acoustically open boundaries by effectively absorbing
outgoing acoustic waves, surpassing other methods limited to specific angles, [7].

The structure of the paper is as follows. The next section is devoted to the
FSI problem formulation including also description of numerical approximation and
details of the FSI simulation. The third section presents (two) aeroacoustic models
and the analysis of sound sources based on the FSI simulation. Finally, a short
conclusion closes the paper.

2. FSI model

First, the geometrical configuration is showed. Further, the mathematical de-
scription of the FSI problem and the FEM discretization procedure is given. Some
characteristic results of the flow-induced vibrations of VFs are shown.

2.1. Geometry

The schematic figure of larynx anatomy including VF position without an air-
ways space is shown at Figure 2 followed by a considered idealized two-dimensional
geometrical set-up of the FSI problem. For the description of the elastic struc-
ture deformation the reference coordinates are utilized, i.e. computational domain
Ωs = Ωs

t = Ωs
ref ⊂ R2 at arbitrary time t is used. In the case of fluid flow we dis-

tinguish between the reference fluid domain Ωf
ref ⊂ R2, i.e. the domain occupied by

fluid at time instant t = 0 with the common interface ΓWref
= ΓW0 , and the domain

Ωf
t ⊂ R2 occupied by fluid at any time instant t ∈ (0,T), which is determined by the

motion of the elastic structure (particularly by the position of the interface ΓWt).
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2.2. Mathematical model

We start with the description of the ALE method which allow us to treat relatively
easy time-dependency of fluid domain Ωf

t .

ALE method. This method is based on a diffeomorphic and smooth mapping At of
any reference point X ∈ Ωf

ref on the point of deformed domain x = At(X) ∈ Ωf
t , par-

ticularly the interface can only evolve in time (according to the structural displace-
ment) as ΓWt = At(ΓWref

), while the other boundaries remain staticAt(∂Ωf
ref\ΓWref

) =

∂Ωf
ref\ΓWref

. Further, the ALE domain velocity wD representing the velocity of

a point x with a given reference X ∈ Ωf
ref is defined by

wD(x, t) = ŵD(A−1
t (x), t), where x = At(X) ∈ Ωf

t , (1)

and ŵD(X, t) = ∂
∂t
At(X), for t ∈ (0,T) and X ∈ Ωf

ref . Finally, the ALE derivative,

i.e. the time derivative with respect to a fixed reference X ∈ Ωf
ref , satisfies (see [2])

DA

Dt
f(x, t) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t). (2)

Fluid flow. The flow of a viscous incompressible fluid in the time-dependent do-
main Ωf

t is modelled using the Navier-Stokes equations in the ALE form (for details
see [2])

DAv

Dt
+ ((v −wD) · ∇)v − νf∆v +∇p = 0, div v = 0 in Ωf

t , (3)

where v(x, t) is the fluid velocity, p denotes the kinematic pressure and νf is the
kinematic fluid viscosity.

Figure 2: Left: Schematic picture of upper human airways. Middle: Frontal cut
of the larynx reveals the position and a complicated physiological structure of VFs.
Arrows denotes approximate scaling with respect to the left and to the right figure.
Right: Considered simplified FSI geometry undergoing a VFs deformation and the
marked boundaries are: inlet ΓfIn, outlet ΓfOut, walls ΓfDir, ΓsDir and interface ΓWt .
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We impose the zero initial condition and the following boundary conditions (BCs)
alongside equations (3)

a) v(x, t) = wD(x, t) for x ∈ ΓfDir ∪ ΓWt ,

b) (p− pref)n
f − νf ∂v

∂nf
= −1

2
v(v · nf )− on ΓfOut, (4)

c) (p− pref)n
f − νf ∂v

∂nf
= −1

2
v(v · nf )− +

1

ε
(v − vin) on ΓfIn,

where the vector nf = (nfj ) denotes the outward unit normal to the boundary ∂Ωf ,
pref denotes a reference pressure and by (α)− the negative part of real number α ∈ R
is denoted, i.e. (α)− = min{0, α}. Condition (4 b) is the so-called directional do-
nothing boundary condition, which increases the stability in the case of a backward
inlet through the outlet boundary, see [11]. Condition (4 c) is the penalization
inlet boundary condition, a generalization of the Dirichlet (for ε → 0) and the
Neumann BC (for ε→ +∞), see [21]. For suitably chosen penalization parameter ε
its behaviour is favourable, as it allows maintaining the maximal subglottic pressure
within a physiological range during the channel closing phase, [16, 21].

Elastic structure. The structure deformation represented by displacement u(X, t) =
(u1, u2) of any point X ∈ Ωs is described by partial differential equations

ρs
∂2ui
∂t2
−
∂τ sij
∂Xj

= 0, in Ωs × (0,T), (i = 1, 2), (5)

where ρs is the structure density and τij are the components of the Cauchy stress
tensor. The stress tensor components assuming the isotropic body can be expressed
as

τ sij = λsdiv u δij + 2µsesij(u), (6)

where δij denotes Kronecker’s delta and esij(u) = 1
2

(
∂uj
∂Xi

+ ∂ui
∂Xj

)
is the small strain

tensor. Parameters λs, µs are the Lamé coefficients, see e.g. [2]. Problem (5) is
equipped with the zero initial conditions and the following BCs

a) u(X, t) = uDir(X, t) for X ∈ ΓsDir, (7)

b) τ sij(X, t)n
s
j(X) = qsi (X, t), for X ∈ ΓWref

,

where the ΓWref
,ΓsDir are disjoint parts of the boundary ∂Ωs and nsj(X) are the

components of the outward unit normal to ∂Ωs, see Figure 2.

Coupling conditions. The fluid and structure problems are coupled together with
the aid of the interface boundary conditions prescribed at the interface ΓWt whose
position is unknown and it is determined implicitly through the structural displace-
ment u

ΓWt =
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
,∀t ∈ (0,T). (8)

173



Further, the kinematic BC representing continuity of velocities across the interface
is prescribed for the fluid flow problem in the form of equation (4 a).
The dynamic BC enforcing stress continuity in normal direction at the interface ΓWref

has the form of equation (7 b), where the components qsi of the vector of acting
aerodynamic forces qs are given by

qsi =
2∑
j=1

ρf
(
pδij − νf

(
∂vi
∂xj

+
∂vj
∂xi

))
nfj (x). (9)

2.3. Numerical approximation

The FEM is used for spatial discretization of considered subproblems (5) and (3).
For the purpose of time discretization the time interval [0,T] is divided into N
equidistant parts of length ∆t, i.e. tn = n∆t,∆t = T

N
, where n = {0, 1, . . . , N}.

Elastic structure. The FEM discretization of elasticity problem (5) is standard
and it leads to the system of ordinary differential equations of the second order

Mα̈+ Cα̇+ Kα = b(t), (10)

for definitions and further details see [21]. The system (10) is then numerically solved
by the Newmark method.

Fluid flow. First, the ALE derivative is discretized by the backward difference
formula of second order (BDF2), see [2].

In order to formulate problem (3) weakly, we start with the definition of function
spaces involved. The function space for velocity test functions X = X × X is
defined as follows X = {f ∈ H1(Ωf )| f = 0 on ΓfDir ∪ ΓfWtn+1

} and M = L2(Ωf ).

Then the fluid flow problem can be formulated abstractly in weak form as searching
for unknown V = (v, p) ∈ H1(Ωf ) × M , which approximately satisfies boundary
condition (4a) and

a(V,Φ) + c(V ;V,Φ) +
1

2
((v · n)+v,ϕ)Γf

In
+

1

ε
(v,ϕ)Γf

In
= f(Φ) +

1

ε
(vDir,ϕ)Γf

In
(11)

is fulfilled for any test function Φ = (ϕ, q) ∈ X×M , where

a(V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+ νf (∇v,∇ϕ)Ωf − (p, divϕ)Ωf + (q, div v)Ωf ,

c(V ∗;V,Φ) =
1

2

(
(((v∗ − 2wD) · ∇)v,ϕ)Ωf − ((v∗ · ∇)ϕ,v)Ωf + ((v∗ · n)+v,ϕ)Γf

Out

)
,

f(Φ) =
1

2∆t

(
4vn − vn−1,ϕ

)
Ωf , (12)

and by (α)+ the positive part of real number α ∈ R is denoted, i.e. (α)+ = max{0, α}.
The bilinear form a(·, ·) and functional f(·) is the standard weak formulation of
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Stokes problem. The trilinear form c(·; ·, ·) represents the skew-symmetric form of
the convection, which gives us the directional do-nothing BC (4b), see [11]. The real-
ization of penalization inlet BC (4 c) introduces additional terms 1

2
((v ·n)+v,ϕ)Γf

In
+

1
ε
(v,ϕ)Γf

In
and 1

ε
(vDir,ϕ)Γf

In
in the weakly formulated fluid flow problem, see [21].

The derived weak formulation (12) is discretized by the stabilized FEM, see [21].

Finally, the strongly coupled partitioned approach is selected for the FSI numer-
ical solution, i.e. the convergence of aerodynamic forces in each inner iteration cycle
is checked and the fluid flow and the elasticity approximative solutions are iterated
in every time step until the difference of aerodynamic forces is smaller than 10−5,
see [21].

2.4. Numerical results of the FSI problems

In this part the FSI problem is solved in the full channel with vocal fold model
MALE having parabolic shape, see e.g. [5, 16]. All material parameters are the
same as in [21, 19], particularly the initial gap is set to ginit = 0.8 mm and time step
∆t = 2.5 · 10−5 s. Then four cases with different inlet BCs are compared:

1) case DIR: the Dirichlet boundary condition v = vDir with the given constant inlet
velocity vDir = (2.1, 0) m/s.

2) case PRES: the pressure difference (between the inlet and the outlet) in the form
of pref = 400 Pa is prescribed in condition (4b) on the inlet ΓfIn. The choice of pressure
drop ensures that the airflow rates in cases PRES and DIR are comparable.

3) case PEN-W: the penalization BC (4c) is applied with the given velocity vDir

and the penalization parameter ε = 5 · 10−4 s/m.

4) case PEN-S: the penalization BC (4c) is applied with the given velocity vDir and
the penalization parameter ε = 1 · 10−5 s/m.

First, two snapshots from the PEN-S simulation are shown in Figures 3 and 4,
illustrating the typical change in VFs position as it alternates between convergent
and divergent states. Further, the increasing intensity of glottal jet during opening
phase followed by intensity fading for fully open glottis and again the rise of fluid
velocity at the glottis up to the maximal values during VF closing phase can be
observed. The large vortices formed downstream from the glottis (only the first one
is visible in the snapshots) are slowly decaying into smaller ones. The very similar
character of the flow field was obtained e.g. in [8].

The given selection of vDir and pref is above critical one and it leads in all cases to
flutter instability phenomenon, simulations were terminated by a solver failure due
too large structure vibration amplitudes and therefore too much deformed compu-
tational fluid mesh. Such behaviour is here documented by the inlet flow velocity,
the pressure drop and the (whole) gap width displayed in Figures 5 and 6. We can
notice that the inlet velocity is either constant or heavily oscillating in cases of DIR
and PRES, respectively. Similarly the pressure drop - if prescribed - remains almost
constant, while for the DIR case it grows fast to unphysically high values. This
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Figure 3: Airflow velocity magnitude in PEN-S case at moments of the most closed
and the most opened channel. The domain Ωf

t is in figures truncated.

Figure 4: Airflow pressure and magnitude of the VF displacement in mm shown in
PEN-S case as in Fig. 3.

Figure 5: The inlet airflow velocity (left) and pressure difference between the inlet
and the outlet of the channel (right) for cases DIR, PEN-S, PEN-W and PRES.

behaviour is expected as theoretically the pressure drop in the DIR case would reach
infinity as the channel approaching closure.

The behaviour of the PEN-S and PEN-W cases, i.e. a generalization of both
previous BCs with switching controlled by parameter ε, provides a combination of
the aforementioned. The inlet velocity can a little oscillate and the pressure drop
gradually rises as the gap between VFs starts to close more and more, see Figure 6.
Nevertheless, the maximal value of the pressure drop is obviously controlled by the
value of ε.

Further, the VF vibration pattern can be illustrated on the phase portraits of
point S (the top point of the bottom VF), see Figure 7. The phase portraits of cases
DIR and PEN-S indicate a much faster development of the flutter phenomenon than
in case PRES. The phase portrait of case PRES moreover differs in the motion of
point S, the different motion pattern(s) is evidently excited.
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Figure 6: Time development of the gap in cases DIR, PEN-S, PEN-W and PRES.

a) DIR b) PEN-S c) PRES

Figure 7: Trajectory of point S in the X–Y plane. The blue curve in the PRES case
shows the initial development, while the red one marks the developed VF vibrations.

Additionally, the dependence of the transglottal pressure on the gap can be con-
structed from Figures 5 and 6 by time elimination, see Figure 8. The pressure-gap
curve is a rough estimate of the transferred energy from airflow to VF vibration
provided by means of an area A closed inside, [4], and it is usually a good metric in
the case of laboratory experiments, although the transferred energy can be precisely
computed for the case of numerical simulation, see e.g. [19].

The pressure-gap curves in Fig. 8 capture the flutter regime and they are not
closed as the regular periodic VF vibration cycle has not emerged yet (typically
connected with VF mutual contact). Nevertheless, it is obvious that the pressure
drop associated with reaching a certain minimal gap value is much lower for case
PEN-S (and also for PEN-W) compared to the DIR case, and it still remains within
the physiological range, i.e. below circa 3 kPa, [17]. The orientation of the curves
in all cases is anticlockwise, which is interestingly in a contradiction with laboratory
results of [4].

3. Aeroacoustic models

First, the considered two-dimensional geometry is shown. Then two diffferent
aeroacoustic analogies are described. Finally, the acoustic sources and corresponding
results of simplified FSAI simulation are shown.
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Figure 8: Dependence of the transglottal pressure on the gap for three simulations
of the FSI problem: DIR, PEN-S and PRES. The graph depicts only last four
incomplete oscillation cycles and it is undulated due to too low sampling rate of the
data saving. Arrows show the orientation of the curves (i.e. time progression).

3.1. Geometry configuration

The acoustic domain Ωa, where the acoustic problem is solved, is depicted in
Figure 9, compare it with Figure 2. It is composed of three parts, i.e. Ωa = Ωa

src ∪
Ωa

air∪Ωa
pml. The acoustic sources are calculated from the known flow field exclusively

in the domain Ωa
src, which is the same as the reference fluid domain, i.e. Ωa

src = Ωf
ref .

1

The domain Ωa
air represents a part of the vocal tract behind the glottis up to the

mouth (indicated by arrow Ltract in Fig. 9) including a far field region (arrow Lfree),
i.e. the outer space. The PML domain Ωa

pml (see arrow LPML) closes both the
aforementioned domains in order to damp the outgoing sound waves.

Figure 9: Computational acoustic domain Ωa with vocal tract model M1 described
later and its dimensions. Microphone is placed in the mouth opening.

3.2. Mathematical models of the aeroacoustic problem

Aeroacoustics studies sound generated by aerodynamic processes, typically sound
generated by flow around obstacles or by turbulence, see e.g. [7], [1]. The compress-

1The change of domain Ωa
src in time is neglected. Sound sources outside domain Ωa

src are omitted.
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ible Navier-Stokes equations in general describe all aspects of fluid flow including
acoustics. However, acoustic pressure is usually a tiny part of the total pressure,
often comparable to numerical errors. Additional challenges arise from length scale
disparities or unwanted dispersion and dissipation properties of numerical schemes,
see [7]. To address these challenges, hybrid acoustic analogies, which decouple fluid
flow and acoustic problems, provide an effective and practical solution by allowing
the use of problem-specific solvers.

3.2.1. Lighthill acoustic analogy

The Lighthill analogy was derived from compressible Navier-Stokes equations un-
der the assumption that acoustic waves with origin in a small source region propagate
through a surrounding medium in rest state characterized by v0 = 0, p0 and rest fluid
density ρf0 . The Lighthill analogy has the final form of inhomogenous wave equation
for unknown pressure fluctuation p′ = p− p0

1

c2
0

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2Tij
∂xi∂xj

, (13)

with a given speed of sound c0 and known values of the Lighthill tensor T = (Tij),
which double divergence plays role of effective sound source term. The components
of the Lighthill tensor Tij are given by

Tij = ρfvivj + ((p− p0)− c2
0(ρf − ρf0))δij − τ fij ≈ ρf0vivj, (14)

where τ fij is the fluid viscous stress tensor and the subsequent approximation of the

Lighthill tensor by neglecting the viscous stress τ fij and the stresses connected with
the non-isentropic processes (p′ − c2ρ′)δij are applied according to [9], [1].

The disadvantage of the Lighthill analogy is that pressure fluctuation p′ can be
regarded as the acoustic pressure pa only outside the flow domain because inside the
source region it represents a superposition of acoustic and hydrodynamic pressures,
see [7], [1].

3.2.2. Perturbed convective wave equation

Another suitable choice from many other acoustic analogies is the PCWE, see [6, 7].
Its aim is to describe more precisely the behaviour of purely acoustic components. It
is based on splitting of physical quantities into mean and fluctuating parts. The fluc-
tuating variables consists of acoustic parts va, pa and non-acoustic components vic, pic,
(i.e. incompressible parts)

p = p+ pic + pa, v = v + vic + va, (15)

see [7]. Assuming incompressible homoentropic flow the splitting leads to the follow-
ing partial differential equation for unknown va and pa

∂pa

∂t
+ v · ∇pa + ρf0c

2
0∇ · va = −Dp

ic

Dt
,

∂va

∂t
+∇(v · va) +

1

ρf0
∇pa = 0, (16)
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where the substantial derivative D
Dt

equals D
Dt

= ∂
∂t

+ v · ∇. These equations can be
rewritten into scalar one, denoted as PCWE, with the help of acoustic potential ψa,
which is related to the acoustic particle velocity as va = −∇ψa (since the acoustic
velocity field is irrotational)

1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρf0c
2
0

Dpic

Dt
. (17)

Moreover, for low velocities, we can simplify (17) by disregarding the convection effect
and setting v = 0, see [18]. A relatively big advantage comparing (17) with (13)
is only one and just the time derivative of right hand source term. The numerical
computation of the time derivative is usually less sensitive to numerical errors, [7, 1],
and also it is usually well resolved in time.

The equations (13) or (17) are equipped with the zero initial conditions and the
boundary of acoustic domain ∂Ωa with the outer normal na is considered as fully
reflecting (called also sound hard)

∂P

∂na
(x, t) = 0 for x ∈ ∂Ωa, t ∈ (0,T), (18)

where P denotes the appropriate acoustic unknown.

PML. In order to mimic the open-boundary problem of radiation acoustic waves
outside the human head the PML technique is used. The key of this technique is to
add a new PML subdomain on the boundary. The proper choice of complex values
of sound speed and density governed by the set of artificial equations inside the
PML domain leads to exponential wave damping inside PML and to eliminating any
reflection of acoustic waves on the interface between the propagation domain and
the PML. We further refer to [7].

3.3. Numerical approximation

For the numerical solution the FEM is again used, see e.g. [18]. The interpo-
lation of aeroacoustic sources from the computational fluid to the acoustic mesh is
performed with the help of the program CFSDat, see [7].

3.4. Numerical results of the simplified FSAI problem

This part contains acoustic results corresponding to proper choice of acoustic
domains characterized by their resonant frequencies, computation and analysis of
sound sources and finally the transient computation providing the frequency spectra
of phonation of vowel [u:].

3.4.1. Resonant frequencies of acoustic domains

Two variants of acoustic domain Ωa are analyzed here in order to find their acous-
tic resonant frequencies, usually called formants. In both cases the acoustic domains
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differ only in the portion of inclusion of domain Ωa
src. The first variant is labeled

as M1 (model 1) and the second as M2 (model 2), which has removed the subglottal
and the glottal regions, see Figure 10. The part of domain Ωa representing the VT
model for the vowel [u:] based on vocal tract cross-section MRI segmentation [14] is
for M1 and M2 models the same, see Figure 9 and [22].

The formants of vocal tract are determined by the transfer function approach due
to inclusion of the PML layer prohibiting a natural choice of modal analysis. In this
approach, the ratio of the output to the input (unit) signal F̂ is evaluated based on
the Helmholtz equation (wave equation in frequency domain), see [7, 22],

−
(
ω2

c2
0

+ ∆

)
p̂ = F̂ , (19)

where the speed of sound c0 = 343 m/s, ω denotes the angular frequency and p̂(x, ω)
is the Fourier transform of p(x, t). As output is regarded p̂ at the microphone position
in the investigated frequency range 50− 3000 Hz.

The transfer functions computed for models M1 and M2 are shown in Figure 10
on the right and the found formants are listed in Table 1. Both models M1 and M2
have four formants in the range 50− 2500 Hz, M1 having an additional formant F5
at 2638 Hz due to the subglottal part of the VT model, see [22]. The occurrence
of F3 at frequency 1432 Hz contrary to Story’s results [14] is probably caused by
the longer acoustic domain (the length of approx. 23 cm compared to Story’s length
of 18.25 cm). The formant frequency F4 of both models lies in the vicinity of Story’s
reference F3, however the M2 model is chosen for further simulations due to a higher
similarity with results of [14].

Figure 10: Left: Acoustic models M1 and M2. Right: Computed transfer functions
for given cases. The formants of vowel [u:] from [14] are highlighted by vertical lines.

181



F1 F2 F3 F4

M1 271 909 1432 2365
M2 280 952 1432 2440
Story 389 987 2299 −

Table 1: Computed formant frequencies (in Hz) of the vocal tract models M1 and
M2. The measured (Story) results for vowel [u:] are from reference [14].

3.4.2. Sound sources

The aeroacoustic results are based on the FSI results obtained with four-layered
VF of shape denoted by us as ZORNER and inlet pressure difference of 800 Pa, see
the detailed settings and the results of fluid flow in [18]. The sound sources computed
from the FSI results are analyzed to get a spatial distribution and frequency content.
Finally, the sound source propagation in the chosen acoustic model M2 of both
aeroacoustic approaches – LH and PCWE, are compared.

Spatial distribution of sound sources for different aeroacoustic approaches.
The sound sources computed for both different approaches according to (14) and (17)
are displayed in Figure 11. In the LH case the sound sources are primarily associated
with the velocity gradients and in the current simulation they are greatly distributed
downstream of the glottis, where the glottal jet creates strong shear layers as it enters
the supraglottal spaces, and also in the vicinity of the VF boundary, where the glottal
jet separates from the VF surface.

The dominant sound sources in the cases of the PCWE approach are connected
with pressure time changes, which local extremes are located primarily in the vortex
centers. The vortices are formed by a complex decay of the glottal jet downstream the
glottis. The sound source structure is similar as in phase-locked PIV measurements
[10] or in the numerical simulations [12].

Frequency content. The frequency content of the sound sources is investigated
with the Fourier transform applied on the time signal at each point of the sound
sources. The power spectral densities (PSD) of the sound sources at two repre-
sentative frequencies for both aeroacoustic approaches are shown in Figure 12. The
frequencies 232 Hz and 2486 Hz are the local spectral maxima representing one of the
dominant VF vibration frequencies and an (higher) non-harmonic frequency, respec-
tively. The quantitative comparison of sound sources PSD values is here irrelevant
as in all cases a different acoustic quantity is depicted.

The location of main sound sources for frequency 232 Hz for all considered cases
is inside the glottis and having dipole character. The LH sources located before
the tip of VFs are less prominent than the quadrupole-like structure formed down-
stream from the narrowest part of the channel. In the PCWE case the dipole clearly
dominates. These findings coincide very well with the results of [13].
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0) 1) .

A) B) .

Figure 11: Comparison of (normalized) instant sound densities for different aeroa-
coustic approaches at chosen time instant shown together with the flow field. 0) The
magnitude of airflow velocity. 1) The pressure distribution. Below instant sound
densities are shown for: A) the LH analogy and B) the PCWE approach.

Figure 12: Computed power spectral densities of sound sources at 232 Hz (top) and
2486 Hz (bottom) for the LH (left) and PCWE approach (right). The color scale is
logarithmic, and it is different for each figure.
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The higher frequency sources like e.g. at 2486 Hz are mainly located in the
supraglottal channel, see Figure 12 bottom. These sound sources can be associated
with the free jet pouring out of an opening (glottis). In the LH case the sound sources
at 2486 Hz are located along boundaries of the glottal jet, cp. [10]. The PCWE
sound sources are situated in the supraglottal area typically following periodic series
of vortices centers, nevertheless in this case the PSD graph is dominated by the
merged spatial maxima of the first four vortices.

3.4.3. Sound propagation in the chosen acoustic domain

The sound sources of the Lighthill (LH) analogy and the simplified PCWE
(sPCWE) approach, where the convection effects are disregarded on the left-hand
side of (17) while keeping the full right-hand sound sources of (17), similar as in
[18]. The computed sound sources are then used for their time propagation in the
chosen acoustic domain M2 and the resulting acoustic pressure is observed in the
microphone position. Its sound pressure levels at frequency domain up to 3 kHz are
shown in Figure 13. Both approaches detect four frequency peaks matching very well
the first four formants of the vocal tract model M2, but there are substantial differ-
ences in the SPL maxima. For the LH case the first frequency of 278 Hz reaches the
highest SPL of circa 135 dB followed by frequency peaks 942 Hz and 2421 Hz, each
gradually lowered by approximately 20 dB. The sPCWE approach is able to predict
all four formants with more equal distribution of SPL, where the most significant
peak with circa 110 dB is located at the frequency of F2 contrary to the LH case.
This is in agreement with [10] stating clear domination of the first frequency peak
of the LH simulation, see also [13] and cf. [12]. Our previous results of [18] were
spoiled by a wrong setting of PML contrary to the latest one, see [20, 15].

Figure 13: Sound pressure levels of acoustic pressure in the frequency domain, ob-
tained by the LH analogy and the sPCWE approach at the microphone position
(see Fig. 9). The black vertical lines mark the formants of acoustic domain M2, see
Table 1.
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The high values of SPL (comparable to a loud singing) are probably caused, first,
by a relatively high prescribed pressure drop and the position of the microphone di-
rectly at the mouth opening, cf. [23]. Second, there is a generally different 2D fluid
flow dynamics contrary to more complex 3D fluid flow dynamics (having impact
on the aerodynamical sound sources). Finally, in agreement with [13], we regard
the SPL results of the LH analogy as overestimated due to the absence of acous-
tic/hydrodynamic splitting, which leads to the superimposition of hydrodynamic
quantities in the sound sources.

4. Conclusion

This article presents a complex problem of fluid-structure-acoustic interaction,
motivated by human phonation. To simulate normal speech, a suitable approach is
to use the fluid-structure interaction model to describe flow-induced VF vibrations
as the main phonation mechanism, along with the application of acoustic analogies
to separately solve the aeroacoustic problem. The both aforementioned problems are
mathematically described and numerically approximated using FEM-based solvers.

The FSI numerical results compare flow characteristics for three inlet boundary
conditions, showing that the penalization BC effectively controls maximal pressure
difference during the channel closing phase. The simulation of flutter regime is
documented by phase portraits of the selected point and by the curve plotting the
dependence of the transglottal pressure on the gap.

In the acoustic results, the resonant acoustic frequencies of different acoustic
domains are first investigated. Then the sound source analysis reveals the major
sound source distribution at the glottis for low frequencies connected to VF vibration,
while the majority of high-frequency sources is located at the supraglottal area.
Finally, the acoustic pressure at the mouth position is obtained by the propagation
of sound sources in time. Its SPL shows that the formant frequencies are the most
dominant ones, as expected for the simulation without VF contact. The results of
the Lighthill analogy obviously overestimates SPL, while the sPCWE results seem
promising.
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[19] Valášek, J. and Sváček, P.: On aerodynamic force computation in fluid-structure
interaction problems - comparison of different approaches. J. Comput. Appl.
Math. 429 (2023), 115–208.
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v Plzni

Jan Chleboun, jan.chleboun@cvut.cz

Katedra matematiky, Fakulta stavebńı ČVUT v Praze
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Dalibor Lukáš, dalibor.lukas@vsb.cz
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Ústav geoniky AV ČR, v. v. i., Ostrava
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Stanislav Sysala, stanislav.sysala@ugn.cas.cz
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