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Introduction,

recapitulation,

& motivation



Linear approximation problem:

A(ξ) ≈ β, where β /∈ Im(A)

ξ ∈ V , β ∈W , and A ∈L (V ,W )

(finite-dimensional; over the same field — R or C)

Least squares (LS):

min
γ∈W

∥γ∥W s.t. (β + γ) ∈ Im(A)
Total least squares (TLS):

min
γ ∈W

E ∈S ⊆L (V ,W )
∥[ ∥γ∥W , ∥E∥L ... ]∥R2 s.t. (β + γ) ∈ Im(A + E)

⇐⇒ ∃ ξTLS ∶ (A + E)(ξTLS) = (β + γ)



Vector (or single) right-hand side (RHS) TLS:

Ax ≈ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

≈

min
g ∈ Rm

E ∈ Rm×n

∥[g,E]∥F s.t. (b + g) ∈R(A +E)

How to get the TLS solution?

Ax ≈ b

−b +Ax ≈ 0m
[b,A] [ −1

x
] ≈ 0m

RRRRRRRRRRRRRRRRRRRRRR

(A +E)xTLS = (b + g)
−(b + g) + (A +E)xTLS = 0m

([b,A] + [g,E]) [ −1
xTLS

] = 0m



Singular value decomposition (SVD) of a matrix:

Let M ∈ Rs×t be a matrix of rank r = rank(M). Then

M = UΣV T =
r∑
j=1

ujσjv
T
j

where

U = [u1, u2, . . . , us] ∈ Os i.e. U ∈ Rs×s and UT = U−1,

V = [v1, v2, . . . , vt] ∈ Ot i.e. V ∈ Rt×t and V T = V −1,

Σ = [ diag(σ1, σ2, . . . , σr) 0r,t−r
0s−r,r 0s−r,t−r

] ∈ Rs×t
and

σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0.



Eckart—Young—Mirsky (EYM) theorem:

Let M ∈ Rs×t, rank(M) = r, i.e. M = ∑rj=1ujσjvTj . Then

∥M −N☆∥F = min
N ∈ Rs×t

rank(N) < r
∥M −N∥F = σr

where

N☆ =
r−1∑
j=1

ujσjv
T
j .

N☆ is the optimal low-rank approximation of M . Since the smallest

singular value is q-tuple, where q ≥ 1, i.e.,

σr−q > σr−q+1 = ⋯ = σr > 0,
the minimizer N☆ may not be unique.



So, how to get the TLS solution?

Let for simplicity assume rank(A) = n. Then rank([b,A]) = n +1 and

[b,A] = n+1∑
j=1

ujσjv
T
j ,

EYM theorem gives us the optimal correction

[g,E] = −un+1σn+1vTn+1 and [b,A] + [g,E] = n∑
j=1

ujσjv
T
j .

Moreover

([b,A] + [g,E])vn+1 = 0m.
Now it remains to scale vn+1 to

vn+1 ⋅ ( −1
v1,n+1

) = [ −1
xTLS

] . . . Wait!



Since the smallest singular value is (q+1)-tuple, we can play the same

game with other right singular vectors. If the first row of

[vn−q+1, . . . , vn+1]
is nonzero, we have the TLS solution (for q ≥ 1 non-unique).

And what if it is zero? Then our construction fails (and in fact the

TLS solution does not exist). Technically, we can employ larger and

larger singular values and play similar game, yielding so-called non-

generic solution (see Van Huffel), but the optimality is lost (it can

also be reformulated as a constrained TLS).

But what it means? Why there is no solution (on the contrary to the

standard LS)?



Example #1 (Golub—Van Loan):

Ax = [ 1 0
0 0

] [ ξ1
ξ2
] ≈ [ 1

1
] = b.

Let E and g be arbitrary corrections that make the system compatible.

Denote ∥[g,E]∥F = ε. Then

E′ = [ 0 0
0 ε/2 ] , g′ = [ 0

0
]

make the system compatible as well but with ∥[g,E]∥F = ε/2.
Consequently, there is no optimal correction. Moreover the norm of

the solution of (A +E′)x = (b + g′) grows to infinity as 1/ε.
(Note, it does not satisfy our extra assumption — A is not of full

column rank.)



Example #2 (geometric): Given two measurements (red points ⨉ in(a, b)-plane), goal is to find a linear model of the data — by TLS:

α

−β

β

a

b

Ax = [ α
α
] [ξ] ≈ [ β

−β
] = b

[b,A] = [ β α

−β α
] is of full column rank

for β ≠ 0, α ≠ 0

with the SVD

[ β α

−β α
] = (

√
2

2
[ sgn(β) sgn(α)
−sgn(β) sgn(α) ])[

√
2∣β∣ 0

0
√
2∣α∣ ] [

1 0
0 1

]T

If ∣β∣ < ∣α∣, then there is unique TLS solution β = 0 ⋅α.
If ∣β∣ = ∣α∣, then there are infinitely many TLS solutions.
If ∣β∣ > ∣α∣, then our construction gives (and there is) no TLS solution.



Example #3 (Paige—Strakoš): Let

Ax = [ A11 0
0 A22

] [ x1
x2
] ≈ [ b1

0
] = b

then

[b,A] [ −1
x
] = [ b1 A11 0

0 0 A22
]
⎡⎢⎢⎢⎢⎢⎣
−1
x1
x2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
[b1,A11] [ −1x1 ]

A22x2

⎤⎥⎥⎥⎥⎥⎦
≈ 0,

where the red sub-problem needs to be solved, the blue one has

obvious (minimum norm) solution

[b1,A11] [ −1x1 ] ≈ 0, A22x2 ≈ 0, x2 = 0.

Assuming A11 (and thus also [b1,A11]) is of full column rank, we have

g1, E11 with ∥[g1,E11]∥F = σmin([b1,A11]), and possibly also x1,TLS.



Example #3 (Paige—Strakoš): Thus

([ b1 A11 0
0 0 A22

] + [ g1 E11 0
0 0 0

])
⎡⎢⎢⎢⎢⎢⎣
−1

x1,TLS

0

⎤⎥⎥⎥⎥⎥⎦
= 0.

If σmin([b1,A11]) > σmin(A22): Take corresponding singular vecs u, v,

take an arbitrary vector z, r = b1 −A11z, and number ε > 0, then

([ b1 A11 0
0 0 A22

] + [ 0 0 rεvT

0 0 −uσminv
T ])

⎡⎢⎢⎢⎢⎢⎣
−1
z

vε−1

⎤⎥⎥⎥⎥⎥⎦
= 0,

with the norm of the correction (∥r∥22 ε2 + σmin
2)12.

With sufficiently small ε we get smaller correction, larger solution,

moreover with arbitrarily chosen component.



The core problem (CP) theory (Paige—Strakoš):

We have Ax ≈ b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm (b /∈R(A)), and [b,A] = UΣV T.
For any

(P,Q) ∈ Om ×On
we define a transformed problem Ãx̃ = (PTAQ)(QTx) ≈ (PTb) = b̃,

[̃b, Ã] [ −1
x̃
] = (PT[b,A] [ 1 0

0 Q
])[ −1

QTx
] ≈ 0m,

[̃b, Ã] = (PTU)Σ ([ 1 0

0 QT ]V )
T

.

Corrections E, g and Ẽ = PTEQ, g̃ = PTg have the same norm

∥[g̃, Ẽ]∥F = ∥PT[g,E] [ 1 0
0 Q

]∥
F

= ∥[g,E]∥F.



The CP theorem:

∀ (A,b) ∈ Rm×n ×Rm ∃ (P☆,Q☆) ∈ Om ×On
such that

[̃b, Ã] = PT
☆ [b,A] [ 1 0

0 Q☆
] = [ b1 A11 0

0 0 A22
] ,

where

(CP1) A11 ∈ R
m̄×n̄ is of full column rank n̄.

(CP2) b1 ∈ R
m̄ is nonzero.

(CP3) uTi b1 are nonzero; ui are left singular vecs of A11, i = 1, . . . m̄.

Ô⇒ (CP4) [b1,A11] is of full row rank m̄.

(CP5) eT1 vℓ are nonzero; vℓ are right sing vecs of [b1,A11], ℓ = 1, . . . n̄+1.
(CP6) Singular values of A11 are simple.

(CP7) Singular values of [b1,A11] are simple.

(CP8) A11x1 ≈ b1, the core problem, always has unique TLS solution.



Note: How the CP looks like and how to get it?

By using the SVD of A:

[b1,A11] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ1 σ1
µ2 σ2
⋮ ⋱
µn̄ σn̄
µm̄ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, µi ≠ 0, i = 1, . . . , m̄,

σ1 > σ2 > ⋯ > σn̄ > 0.

By using the Golub—Kahan bidiagonalization:

[b1,A11] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 δ1
γ2 δ2

⋱ ⋱
γn̄ δn̄

γm̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, γi > 0, i = 1, . . . , m̄,

δj > 0, j = 1, . . . , n̄.



Long story short:

Ax ≈ b A11x1 ≈ b1
CP revealing traf. (P☆,Q☆)

TLS solution x1,TLS

always unique

back-
transformation Q☆ [ x1,TLS

0
]
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Matrix (or multiple) right-hand side TLS:

AX ≈B, A ∈ Rm×n, X ∈ Rn×d, B ∈ Rm×d

≈

min
G ∈ Rm×d

E ∈ Rm×n

∥[G,E]∥F s.t. R(B +G) ∈R(A +E)

How to get the TLS solution?

AX ≈B

−B +AX ≈ 0m,d

[B,A] [ −Id
X
] ≈ 0m,d

RRRRRRRRRRRRRRRRRRRRRR

(A +E)XTLS = (B +G)
−(B +G) + (A +E)XTLS = 0m,d

([B,A] + [G,E]) [ −Id
XTLS

] = 0m,d



In the context of the general setting

A(X) ≈B, A ∶ Rn×d Ð→ R
m×d,

is mapping from (nd)- into (md)-dimensional space.

After reshaping the problem

AX ≈B ⇐⇒ (Id ⊗A)vec(X) ≈ vec(B),
we see that the correction E is sought in proper subset — subspace

S = { (Id ⊗E) ∶ E ∈ Rm×n } ⊊ R
md×nd ≅ L (Rn×d,Rm×d).

This is the origin of several new substantial difficulties.

Here (I ⊗A) = diag(A, . . . ,A) is the Kronecker product,

and vec([x1, . . . , xd]) = [xT1 , . . . , xTd ]T.



Analysis of the solvability:

We again for simplicity assume rank(A) = n, rank(B) = d, and at least

one bj /∈R(A). Then rank([B,A]) ≥ n + 1 and

[B,A] = UΣV T,

where for some q (0 ≤ q ≤ n) and e (1 ≤ e ≤ d)

σn−q > σn−q+1 = ⋯ = σn+1 = ⋯ = σn+e > σn+e+1

and

V = [ V11 V12 V13
V21 V22 V23

] }d}n .

²
n−q

²
q+e

²
d−e

The goal is [V12V22

V13
V23
] transform to [ −IdXTLS

].



Problem properties:

rank (V12) = e(rank (V13) = d − e)
rank (V12) > e

rank (V13) = d − e
(rank (V12) > e)
rank (V13) < d − e

F1 F2 F3 S

Solution of the TLS problem:

exists does not exist

The TLS algorithm gives:

TLS sol “something” ▸◂ non-g sol

rank([V12, V13]) = d . . . < d

V12 ∈ R
d×(q+e), V12 ∈ R

d×(d−e), 0 ≤ q ≤ n, 1 ≤ e ≤ d



Could the CP theory help again?

Similarly as before, the problem is orthogonally invariant and

∀ (A,B) ∈ Rm×n ×Rm×d ∃ (P☆,Q☆,R☆) ∈ Om ×On ×Od
such that

PT
☆ [B,A] [ R☆ 0

0 Q☆
] = [ B1 0 A11 0

0 0 0 A22
] ,

or, equivalently,

(PT
☆AQ☆)(QT

☆XR☆) = [ A11 0
0 A22

] [ X11 X12
X21 X22

] ≈ [ B1 0
0 0

] = (PT
☆BR☆),

so the original problem splits into four sub-problems

A11X11 ≈B1, A11X12 ≈ 0, A22X21 ≈ 0, A22X22 ≈ 0,

where (...)



where the first one A11X11 ≈ B1, the core problem satisfies

(CP1) A11 ∈ R
m̄×n̄ is of full column rank n̄.

(CP2) B1 ∈ R
m̄×d̄ is of full column rank d̄.

(CP3) UT
i
B1 ∈ R

µ̄i×d̄ are of full row rank µ̄i; Ui are bases of left singular

vec subspaces of A11, i = 1, . . . ξ̄, ξ̄ +1.

Ô⇒ (CP4), (CP5), (CP6), (CP7) can be reasonably generalized.

In fact (CP8) can also be geralized, but the result are not very helpful:

A11X11 ≈B1 can still belong into any of the four classes

F1, F2, F3, S,

there are explicitely examples, i.e., it may not have a TLS solution.

Hovewer, from (CP5) it follows that:

If matrix RHS CP belongs to F1, then it has unique TLS solution.



Note: How the CP looks like and how to get it?

By using a rank-revealing decomposition of B together with either
the SVD of A or the block/band generalization of the Golub—Kahan

bidiagonalization, e.g.:

[B1,A11] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1,1 κ1,2 κ1,3 δ1,4
γ2,2 κ2,3 κ2,4 δ2,5

γ3,3 κ3,4 κ3,5 δ3,6

γ4,4 κ4,5 κ4,6 δ4,7
0 γ5,6 κ5,7 δ5,8

γ6,7 κ6,8 0

γ7,8 δ7,9

γ8,9 δ8,10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where γi,π(i) > 0, i = 1, . . . , m̄, δψ(j),d̄+j > 0, j = 1, . . . , n̄.



Key questions and how to approach them:

We would like to understand:

Why the matrix RHS core problem does not have the TLS solution...

What is “wrong” with the data...

How to make more obvious (how to visualize) this quality...

We try to follow two possible paths:

‘Look outside’ — try to generalize even more...

‘Look inside’ — explore the internal structure of core problems...



Look outside

Generalize even more...



There is one very natural way of generalization:

≈

vector RHS

specialization ↑↓ generalization

≈

matrix RHS

specialization ↑↓ generalization

≈

tensor RHS



A few concepts from tensor computations (Kolda—Bader):

By tensor of order k we understand a k-way array of N numbers

T = (tj1,j2,...,jk) ∈ Rn1×n2×⋯×nk, N =∏
k
λ=1nλ

Matrix-tensor product (MT) in ℓth mode (1 ≤ ℓ ≤ k)

Q ∈ Rm×nℓ, S =Q ×ℓ T ∈ R
n1×⋯×nℓ−1×m×nℓ+1×⋯×nk

sj1,...,jℓ−1, i ,jℓ+1,...,jk = ∑
nℓ
jℓ=1

qi,jℓ ⋅ tj1,...,jℓ−1, jℓ ,jℓ+1,...,jk

(Einstein notation does not help us too much.)

Short exercise (all 8 products of two square matrices):

AB =A ×1B, ABT =A ×2B, ATB =AT ×1B, ATBT = AT ×2B,
BA =B ×1A, BAT =B ×2A, BTA =BT ×1A, BTAT = BT ×2A,



A few concepts from tensor computations (part II):

ℓ-mode matricization of a tensor T z→ T {ℓ} ∈ Rnℓ×(N/nℓ),

T =

6 6 2
7 1 0
7 7 0
3 0 8

6 4 1
3 3 4
9 7 4
0 7 6

✟✟

✟✟

✟✟

✟✟

,
T {1} =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6 6 2 6 4 1
7 1 0 3 3 4
7 7 0 9 7 4
3 0 8 0 7 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(∗
,1
,1
)

(∗
,2
,1
)

(∗
,3
,1
)

(∗
,1
,2
)

(∗
,2
,2
)

(∗
,3
,2
)

T {2} =

⎡⎢⎢⎢⎢⎢⎣
6 7 7 3 6 3 9 0
6 1 7 0 4 3 7 7
2 0 0 8 1 4 4 6

⎤⎥⎥⎥⎥⎥⎦
,

(1
,∗
,1
)

(2
,∗
,1
)

(3
,∗
,1
)

(4
,∗
,1
)

(1
,∗
,2
)

(2
,∗
,2
)

(3
,∗
,2
)

(4
,∗
,2
)

T {3} = [ 6 7 7 3 6 1 7 0 2 0 0 8
6 3 9 0 4 3 7 7 1 4 4 6

] ,

(1
,1
,∗
)

(2
,1
,∗
)

(3
,1
,∗
)

(4
,1
,∗
)

(1
,2
,∗
)

(2
,2
,∗
)

(3
,2
,∗
)

(4
,2
,∗
)

(1
,3
,∗
)

(2
,3
,∗
)

(3
,3
,∗
)

(4
,3
,∗
)

with fibres in the inverse lexicographical ordering w.r.t. multi-indices



A few concepts from tensor computations (part III):

Given T ∈ Rn1×n2×⋯×nk, and Qℓ ∈ R
mℓ×nℓ,

(Qℓ ×ℓ T ){ℓ} = Qℓ T {ℓ}.

Associativity of matrix multiplication translates into MT products as

ℓ1 ≠ ℓ2 Ô⇒ Qℓ1×ℓ1 (Qℓ2×ℓ2 T ) = Qℓ2×ℓ2 (Qℓ1×ℓ1 T )

That brings us to general linear transformation of a tensor

(Q1,Q2, . . . ,Qk ∣T ) = Q1 ×1 (Q2 ×2 ⋯ (Qk ×k T )⋯)



Tensor right-hand side TLS:

A ×1 X ≈ B, A ∈ Rm×n, X ∈ Rn×d2×⋯×dk, B ∈ Rm×d2×⋯×dk
≈

min
G ∈ Rm×d2×⋯×dk

E ∈ Rm×n

(∥G∥2+∥E∥2F)12 s.t. R((B+G){1}) ∈R(A+E)

where ∥G∥ = ∥G{1}∥F. Clearly

A ×1 X ≈ B ⇐⇒ AX {1} ≈ B{1}

i.e. all the results about TLS solvability (existence and uniqueness

of TLS solution) in the matrix case, are directly applicable here.

Schematically:

( tensor TLS(A,B) ){1} = (matrixTLS(A,B{1}) ).



Core problem within tensor RSH problem: Similarly as always

∀ (A,B) ∈ Rm×n ×Rm×d2×⋯×dk
∃ (P☆,Q☆,R2,☆, . . . ,Rk,☆) ∈ Om ×On ×Od2 ×⋯ ×Odk

(Rj,☆ are from the Tucker decomposition) such that

PT
☆AQ☆ = [ A11 0

0 A22
] , (PT

☆ ,R
T
2,☆, . . . ,R

T
k,☆ ∣B) = diagk(B1,0)

so the original problem splits into 2k sub-problems

A11 ×1 X11...1 ≈ B1, A11X1i2...ik
≈ 0, A22X21...1 ≈ 0, A22X2i2...ik

≈ 0,

where the core problem has a lot of nice properties (CP1)—... But

( tensor CP(A,B) ){1} ≠ (matrix CP(A,B{1}) ).
Tensor structure has to be preserved.



There is another way of generalizalization:

≈

matrix RHS

specialization ↑↓ generalization

≈

bi-linear matrix RHS



Bi-linear matrix right-hand side TLS:

ALXA
T
R ≈B, AL ∈ R

m×n, X ∈ Rn×s, AR ∈ R
d×s, B ∈ Rm×d

≈

min
G ∈ Rm×d

EL ∈ R
m×n

ER ∈ R
d×s

∥[ G EL

ET
R

0
]∥

F

s.t.
R(B +G) ∈R(AL +EL)
R((B +G)T) ∈R(AR +ER)

● For applications and first steps of analysis (existence and uniqueness

of TLS solution) see Kukush—Markovsky—Van Huffel.

● In the context of general setting A(X) ≈ B, A ∶ Rn×s Ð→ Rm×d, the

correction E is sought in proper subset — submanifold

S = { (ER ⊗EL) ∶ EL ∈ R
m×n, ER ∈ R

d×s } ⊊ R
md×ns ≅ L (Rn×s,Rm×d).

● Enforcing ER = 0 or EL = 0 yields a joined LS-TLS minimization.



Core problem within bi-linear problem: Similarly as always

∀ (AL,AR,B) ∈ Rm×n×Rd×s×Rm×d ∃ (P☆,Q☆,K☆,R☆) ∈ Om×On×Os×Od
such that

(PT
☆ALQ☆) (QT

☆XK☆) (RT
☆ARK☆)T =

[ AL,11 0

0 AL,22
] [ X11 X12

X21 X22
] [ AR,11 0

0 AR,22
]T ≈ [ B1 0

0 0
]

= (PT
☆BR☆),

so the original problem splits into four sub-problems

AL,11X11A
T
R,11 ≈ B1, AL,11X12A

T
R,22 ≈ 0, AL,22X21A

T
R,11 ≈ 0, . . .

where the core problem has a lot of nice properties (CP1)—...



GUT — Grant Unification of TLS:

≈ ≈

≈

≈

←→
←→

←→

←→
←→



k-linear tensor right-hand side TLS:

≈

(A1,A2, . . . ,Ak ∣X ) ≈ B
Aℓ ∈ R

mℓ×nℓ, ℓ = 1,2, . . . , k

X ∈ Rn1×n2×⋯×nk

B ∈ Rm1×m2×⋯×mk

● TLS solvability is not clear.

● For some ℓ it may be Aℓ = I.
● For some ℓ it may be Eℓ = 0 (the joined LS-TLS minimization).

● The core problem (the minimally dimensioned sub-problem) exists.

● But...

...it does not help us to answer our original question...

(On the left hand-side, there may be sum of terms with the same X , yielding

Lyapunov-like or Sylvester-like problems.)



Look inside

Explore the internal structure of core problems...



(De-)composing of CPs:
(We restrict ourselves on matrix case only.)

Let for some (P,Q,R) ∈ Om̄ ×On̄ ×Od̄
PT[B1,A11] [ R 0

0 Q
] = [ B1,µ 0 A11,µ 0

0 B1,ν 0 A11,ν
] .

Then

A11X11 ≈B1 is CP ⇐⇒ { A11,µX11,µ ≈B1,µ is CP

& A11,νX11,ν ≈B1,ν is CP
;

where CP is any problem satisfying (CP1)—(CP3).

Schematically

[B1,A11] ≡ [B1,µ,A11,µ] ⊞ [B1,ν,A11,ν].



Our goal is to study how

● TLS solvability of composed problem [B1,A11] depends on

● TLS solvabilities of individual components [B1,µ,A11,µ] and [B1,ν,A11,ν].
For example we already know that some compositions of two com-

ponents are admissible and some are forbiden:

⊞ F1 F2 F3 S

F1 F1, F2, F3, S –”– –”– –”–
F2 F2 F2 –”– –”–
F3 �

�❅
❅F1, �

�❅
❅F2, F3 �

�❅
❅F1, �

�❅
❅F2 �

�❅
❅F1, �

�❅
❅F2, F3 –”–

S �
�❅
❅F1, �

�❅
❅F2, F3, S �

�❅
❅F1, �

�❅
❅F2 �

�❅
❅F1, �

�❅
❅F2 �

�❅
❅F1, �

�❅
❅F2, �

�❅
❅F3, S

However, it will be useful to know something more about the decom-

posability of CPs, and how the irreducible components looks like.



Irreducible representation w.r.t. decomposing:

Let start with a single matrix M ∈ Rs×t

PTMQ = [ Mµ 0
0 Mν

] ⇐⇒ M ≡Mµ ⊞Mν

Since the SVD M = UΣV T = ∑rj=1ujσjv
T
j
, where r = rank(M), performs

orthogonal block diagonalization with smallest blocks of M , it gives

the irreducible representation of M in terms of decomposing

M ≡ [σ1] ⊞ [σ2] ⊞⋯⊞ [σr] ⊞ [0s−r,t−r] = ( r

⊞
j=1
[σj] ) ⊞ [0s−r,t−r].

How to generalize such concept on pairs (or in general tuples) of

matrices?



Tuples of matrices — A general framework:

The set of all matrices, and the set of all k-tuples of all matrices

M =M (R) = ⋃
s,t ∈N0

R
s×t, M k,

form together with ⊞ (applied componentwisely on tuples) monoids.

Let k = 4 and let

(M1,M2,M3,M4 ) ∈M 4, Mℓ ∈ R
sℓ×tℓ, ℓ = 1,2,3,4.

We introduce three objects:

● Tuple alignment — set of algebraic relations among dimension, e.g.,

TA = {s1 − s2 = 0, s1 + s3 − s4 = 0, t1 + t2 − t3 = 0}
then M 4

TA
denotes the set of all TA-aligned quaruples of matrices.



Tuples of matrices — A general framework:

● Tuple matricizaton — mapping from M k
TA

back to M

TM ∶ M 4
TA
Ð→ M , e.g., TM(M1,M2,M3,M4) = [ M1 M2

M3
M4]

● Tuple transformation — group of allowed orthogonal trafsformations

TT = TT(TA,TM) that defines the congruence, e.g.,

[ M1 M2

M3
M4]≡TT [ P1 0

0 P2
]T [ M1 M2

M3
M4]

⎡⎢⎢⎢⎢⎢⎣
Q1 0 0
0 Q2 0
0 0 Q3

⎤⎥⎥⎥⎥⎥⎦



Search for irreducible representation:

Thus we are living in the set of general problems — pairs of matrices

M 2
TA
= {(A,B) ∶ A ∈ RmA×n, B ∈ RmB×d }, TA = {mA −mB = 0}

where TM(A,B) = [B,A] and [B,A] ≡TT PT[B,A]diag(R,Q).
● The core problem revealing transformation realizes decomposition

within M 2
TA

of the form

(A,B) ≡ (A11,B1)⊞ (A22,0)
where the core problem reduction itself represents orthogonal projec-

tion onto a proper subset of M 2
TA

CPR(A,B) = (A11,B1), CPR ∶ M 2
TA
Ð→ M 2

TA,CP

with a lot of nice properties.



Search for irreducible representation:

● For example

CPR((Aµ,Bµ) ⊞ (Aν,Bν)) ≡ CPR(Aµ,Bµ) ⊞ CPR(Aν,Bν)
● We are able to extract something we call degenerated component

that only increases the residuum (if it is present)

(A,B) ≡ (A11,ϕ,B1,ϕ) ⊞ (0,B1,ψ) ⊞ (A22,0)
●We know that (A11,ϕ,B1,ϕ) is uniquely decomposable into irreducible

components (sub-problems).

● We know some irreducible components (VRHS CP, but not only).

General description is not clear.



That’s all Folks!
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Hnětynková, P, Žáková: AoM 2019 (10.21136/am.2019.0252-18)
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